\r\nHama, Y., Fujioka, Y., Yamamoto, H., Mizushima, N. and Noda, N. N. The triad interaction of ULK1, ATG13, and FIP200 is required for ULK complex formation and autophagy. eLife<\/strong> reviewed preprint (2024). DOI: 10.7554\/eLife.101531.1<\/p>\r\n<\/li>\r\nAlam, J. M., Maruyama, T., Noshiro, D., Kakuta, C., Kotani, T., Nakatogawa, H. and *Noda, N. N. Complete set of the Atg8-E1-E2-E3 conjugation machinery forms an interaction web that mediates membrane shaping. Nat. Struct. Mol. Biol.<\/strong> 31, 170-178 (2024). DOI: 10.1038\/s41594-023-01132-2<\/li>\r\nNoshiro, D. and *Noda, N. N. Immobilization of lipid nanorods onto two-dimensional crystals of protein tamavidin 2 for high-speed atomic force microscopy. STAR Protocols<\/strong> 4, 102633 (2023). DOI: 10.1016\/j.xpro.2023.102633<\/li>\r\n\r\nMaruyama, T. and *Noda, N. N. Protocol for real-time imaging of membrane fission by mitofissin. STAR Protocols<\/strong> 4, 102590 (2023). DOI: 10.1016\/j.xpro.2023.102590.<\/p>\r\n<\/li>\r\n\r\nIshimura, R., Ito, S., Mao, G., Komatsu-Hirota, S., *Inada, T., *Noda, N. N. and *Komatsu, M. Mechanistic insights into the UFM1 E3 ligase complex in ufmylation and ribosome-associated protein quality control. Sci. Adv.<\/strong> 9, eadh3635 (2023). DOI: 10.1126\/sciadv.adh3635<\/p>\r\n<\/li>\r\nHitomi, K., Kotani, T., Noda, N. N., Kimura, Y. and *Nakatogawa, H. The Atg1 complex, Atg9, and Vac8 recruit PI3K complex I to the pre-autophagosomal structure. J. Cell Biol.<\/strong> 222, e202210017 (2023). DOI: 10.1083\/jcb.202210017<\/li>\r\n\r\nIkeda, R., Noshiro, D., Morishita, H., Takada, S., Kageyama, S., Fujioka, Y., Funakoshi, T., Komatsu-Hirota, S., Arai, R., Ryzhii, E., Abe, M., Koga, T., Motohashi, H., Nakao, M., Sakimura, K., Horii, A., Waguri, S., *Ichimura, Y., *Noda, N. N. and *Komatsu, M. Phosphorylation of phase-separated p62 bodies by ULK1 activates a redox-independent stress response. EMBO J.<\/strong> 42, e113349 (2023). DOI: 10.15252\/embj.2022113349<\/p>\r\n<\/li>\r\n\r\nFukuda, T., Furukawa, K., Maruyama, T., Yamashita, S., Noshiro, D., Song, C., Ogasawara, Y., Okuyama, K., Alam, J. M., Hayatsu, M., Saigusa, T., Inoue, K., Ikeda, K., Takai, A., Chen, L., Lahiri, V., Okada, Y., Shibata, S., Murata, K., Klionsky, D. J., *Noda, N. N., and *Kanki, T. The mitochondrial intermembrane space protein mitofissin drives mitochondrial fission required for mitophagy. Mol. Cell<\/strong> 83, 2045\u20132058 (2023). DOI: 10.1016\/j.molcel.2023.04.022<\/p>\r\n<\/li>\r\n\r\nKurusu, R., Fujimoto, Y., *Morishita, H., Noshiro, D., Takada, S., Yamano, K., Tanaka, H., Arai, R., Kageyama, S., Funakoshi, T., Komatsu-Hitrota, S., Taka, H., Kazuno, S., Miura, Y., Koike, M., Wakai, T., Waguri, S., Noda, N. N., and *Komatsu, M. Integrated proteomics identifies p62-dependent selective autophagy of the supramolecular vault complex. Dev. Cell<\/strong> 58, 1189-1205 (2023). DOI: 10.1016\/j.devcel.2023.04.015<\/p>\r\n<\/li>\r\n\r\nIshimura, R., El-Gowily, A. H., Noshiro, D., Komatsu-Hirota, S., Ono, Y., Shindo, M., Hatta, T., Abe, M., Uemura, T., Lee-Okada, H.-C., Mohamed, T. M., Yokomizo, T., Ueno, T., Sakimura, K., Natsume, T., Sorimachi, H., Inada, T., Waguri, S., Noda, N. N. and *Komatsu, M. The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3. Nat. Commun.<\/strong> 13, 7857 (2022).DOI: 10.1038\/s41467-022-35501-0<\/p>\r\n<\/li>\r\n\r\nPark, S. W., Jeon, P., Yamasaki, A., Lee, H. E., Choi, H., Mun, J. Y., Jun, Y. W., Park, J. H., Lee, S. H., Lee, S. K., Lee, Y. K., Song, H. K., Lazarou, M., Cho, D. H., Komatsu, M., *Noda, N. N., *Jang, D. J. and *Lee, J. A. Development of new tools to study membrane-anchored mammalian Atg8 proteins. Autophagy<\/strong> 19, 1424-1443 (2023). DOI: 10.1080\/15548627.2022.2132040<\/p>\r\n<\/li>\r\n\r\nCui, J., Ogasawara, Y., Kurata, I, Matoba, K., Fujioka, Y., *Noda, N. N., Shibasaki, M. and *Watanabe, M. Targeting the ATG5-ATG16L1 protein-protein interaction with a hydrocarbon-stapled peptide derived from ATG16L1 for autophagy inhibition. J. Am. Chem. Soci.<\/strong> 144, 17671-17679 (2022).<\/p>\r\n<\/li>\r\nKubota, Y., Fujioka, Y., Patil, A., Takagi, Y., Matsubara, D., Iijima, M., Momose, I., Naka, R., Nakai, K., Noda, N. N. and *Takekawa, M. Qualitative differences in disease-associated MEK mutants reveal molecular signatures and aberrant signaling-crosstalk in cancer.\u00a0Nat. Commun.<\/strong>\u00a013, 4063 (2022). DOI: 10.1038\/s41467-022-31690-w<\/li>\r\nChino, H., Yamasaki, A., Ode, K. L., Ueda, H. R., *Noda, N. N. and *Mizushima, N. Phosphorylation by casein kinase 2 enhances the interaction between ER-phagy receptor TEX264 and ATG8 proteins.\u00a0EMBO Rep.<\/strong>23, e54801 (2022). DOI: 10.15252\/embr.202254801.<\/li>\r\nFaruk, M. O., Ichimura, Y., Kageyama, S., Komatsu-Hirota, S., El-Gowily, A. H., Sou, Y. S., Koike, M., Noda, N. N. and *Komatsu, M. Phase-separated protein droplets of amyotrophic lateral sclerosis-associated p62\/SQSTM1 mutants show reduced inner fluidity. J. Biol. Chem.<\/strong> 297, 101405 (2021). DOI: 10.1016\/j.jbc.2021.101405<\/li>\r\nTanigawa, M., Yamamoto, K., Nagatoishi, S., Nagata, K., Noshiro, D., Noda, N. N., Tsumoto, K. and *Maeda, T. A glutamine sensor that directly activates TORC1. Commun. Biol.<\/strong> 4, 1093 (2021). DOI: 10.1038\/s42003-021-02625-w<\/li>\r\nMaruyama, T., Alam, J. M., Fukuda, T., Kageyama, S., Kirisako, H., Ishii, Y., Shimada, I., Ohsumi, Y., Komatsu, M., Kanki, T., Nakatogawa, H. and *Noda, N. N. Membrane perturbation by lipidated Atg8 underlies autophagosome biogenesis. Nat. Struct. Mol. Biol.<\/strong> 28, 583-593 (2021). DOI: 10.1038\/s41594-021-00614-5<\/li>\r\nMatoba, K. and *Noda, N. N. Atg12-Interacting Motif Is Crucial for E2-E3 Interaction in Plant Atg8 System. Biol. Pharm. Bull.<\/strong> 44(9):1337-1343 (2021). DOI: 10.1248\/bpb.b21-00439<\/li>\r\nHamano, F., Matoba, K., Hashidate-Yoshida, T., Suzuki, T., Miura, K., Hishikawa, D., Harayama, T., Yuki, K., Kita, Y., Noda, N. N., Shimizu, T. and *Shindou, H. Mutagenesis and homology modeling reveal a predicted pocket of lysophosphatidylcholine acyltransferase 2 to catch Acyl-CoA. FASEB J.<\/strong> 35, e21501 (2021). DOI: 10.1096\/fj.202002591R<\/li>\r\nKageyama, S., Gudmundsson, S., Sou, Y.-S., Ichimura, Y., Tamura, N., Kazuno, S., Ueno, T., Miura, Y., Noshiro, D., Abe, M., Mizushima, T., Miura, N., Okuda, S., Motohashi, H., Lee, J.-A., Sakimura, K., Ohe, T., Noda, N. N., Waguri, S., *Eskelinen, E.-L. and *Komatsu, M. p62\/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response. Nat. Commun.<\/strong> 12, 16 (2021). DOI: 10.1038\/s41467-020-20185-1<\/li>\r\nKodera, N., Noshiro, D., Dora, S. K., Mori, T., Habchi, J., Blocquel, D., Gruet, A., Dosnon, M., Salladini, E., Bignon, C., Fujioka, Y., Oda, T., Noda, N. N., Sato, M., Lotti, M., Mizuguchi, M., *Longhi, S. and *Ando, T. Structural and dynamics analysis of intrinsically disordered proteins by high speed atomic force microscopy. Nat. Nanotech.<\/strong> 16, 181-189 (2021). DOI: 10.1038\/s41565-020-00798-9<\/li>\r\nMatoba, K., Kotani, T., Tsutsumi, A., Tsuji, T., Mori, T., Noshiro, D., Sugita, Y., Nomura, N., Iwata, S., Ohsumi, Y., Fujimoto, T., Nakatogawa, H., Kikkawa, M. and *Noda, N. N.. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol.<\/strong> 27, 1185-1193 (2020). DOI: 10.1038\/s41594-020-00518-w<\/li>\r\nMochida, K., Yamasaki, A., Matoba, K., Kirisako, H., *Noda, N. N. and *Nakatogawa, H. Super-assembly of ER-phagy receptor Atg40 induces local ER remodeling at contacts with forming autophagosomal membranes. Nat. Commun.<\/strong> 11, 3306 (2020). DOI: 10.1038\/s41467-020-17163-y<\/li>\r\nYamasaki, A., Alam, J. M., Noshiro, D., Hirata, E., Fujioka, Y., Suzuki, K., Ohsumi, Y. and *Noda, N. N. Liquidity is a critical determinant for selective autophagy of protein condensates. Mol. Cell<\/strong> 77, 1163-1175 (2020). DOI: 10.1016\/j.molcel.2019.12.026<\/li>\r\nFujioka, Y., Alam, J. M., Noshiro, D., Mouri, K., Ando, T., Okada, Y., May, A. I., Knorr, R. L., Suzuki, K., Ohsumi, Y. and *Noda, N. N. Phase separation organizes the site of autophagosome formation. Nature<\/strong> 578, 301-305 (2020). DOI: 10.1038\/s41586-020-1977-6<\/li>\r\nOsawa, T., Ishii, Y. and *Noda, N. N. Human ATG2B possesses a lipid transfer activity which is accelerated by negatively charged lipids and WIPI4. Genes Cells<\/strong> 25, 65-70 (2020). DOI: 10.1111\/gtc.12733<\/li>\r\nPang, Y., Yamamoto, H., Sakamoto, H., Oku, M., Mutungi, J. K., Sahani, M. H., Kurikawa, Y., Kita, K., Noda, N. N., Sakai, Y., *Jia, H. and *Mizushima, N. Evolution from covalent conjugation to non-covalent interaction in a ubiquitin-like system. Nat. Struct. Mol. Biol.<\/strong> 26, 289-296 (2019). DOI: 10.1038\/s41594-019-0204-3<\/li>\r\nOsawa, T., Kotani, T., Kawaoka, T., Hirata, E., Suzuki, K., Nakatogawa, H., Ohsumi, Y. and *Noda, N. N. Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nat. Struct. Mol. Biol.<\/strong> 26, 281-288 (2019). DOI: 10.1038\/s41594-019-0203-4<\/li>\r\nNoda, H., Asada, Y., Maruyama, T., Takizawa, N., Noda, N. N., *Shibasaki, M. and *Kumagai, N. A C4N4 Diaminopyrimidine Fluorophore. Chemistry<\/strong> 25, 4299-4304 (2019). DOI: 10.1002\/chem.201900467<\/li>\r\nLiu, X.-M., Yamasaki, A., Du, X.-M., Coffman, V. C., Ohsumi, Y., Nakatogawa, H., Wu, J.-Q., *Noda, N. N. and *Du, L.-L. Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with vacuole membrane protein. eLife<\/strong> 7, e41237 (2018). DOI: 10.7554\/eLife.41237<\/li>\r\n*Yamano, K., Wang, C., Sarraf, S. A., M\u00fcnch, C., Kikuchi, R., Noda, N. N., Hizukuri, Y., Kanemaki, M. T., Harper, W., Tanaka, K., *Matsuda, N. and *Youle, R. J. Endosomal Rab cycles regulate Parkin-mediated mitophagy. eLife<\/strong> 7, e31326 (2018). DOI: 10.7554\/eLife.31326<\/li>\r\nYamaguchi, M., Satoo, K., Suzuki, H., Fujioka, Y., Ohsumi, Y., Inagaki, F. and *Noda, N. N. Atg7 activates an autophagy-essential ubiquitin-like protein Atg8 through multi-step recognition. J. Mol. Biol.<\/strong> 430, 249-257 (2018). DOI: 10.1016\/j.jmb.2017.12.002<\/li>\r\nSuzuki, H. and *Noda, N. N. Biophysical characterization of Atg11, a scaffold protein essential for selective autophagy in yeast. FASEB J.<\/strong> 8, 110\u2013116 (2017). DOI:\u00a0\u00a0\u00a0\u00a0 10.1002\/2211-5463.12355<\/li>\r\nYamamoto, H., Fujioka, Y., Suzuki, S. W., Noshiro, D., Suzuki, H., Kondo-Kakuta, C., Kimura, Y., Hirano, H., Ando, T., *Noda, N. N. and *Ohsumi, Y. The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes. Dev. Cell<\/strong> 38, 86-99 (2016). DOI: 10.1016\/j.devcel.2016.06.015<\/li>\r\nYamasaki, A., Watanabe, Y., Adachi, W., Suzuki, K., Matoba, K., Kirisako, H., Kumeta, H., Nakatogawa, H., Ohsumi, Y., Inagaki, F. and *Noda, N. N. Structural basis for receptor-mediated selective autophagy of aminopeptidase I aggregates. Cell Rep.<\/strong> 16, 19-27 (2016). DOI: 10.1016\/j.celrep.2016.05.066<\/li>\r\nYokogawa, M., Tsushima, T., Noda, N. N., Kumeta, H., Enokizono, Y., Yamashita, K., Standley, D. M., Takeuchi, O., Akira, S. and *Inagaki, F. Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions. Sci. Rep.<\/strong> 6, 22324 (2016). DOI: 10.1038\/srep22324<\/li>\r\nWu, F., Watanabe, Y., Guo, X. Y., Qi, X., Wang, P., Zhao, H. Y., Wang, Z., Fujioka, Y., Zhang, H., Ren, J. Q., Fang, T. C., Shen, Y. X., Feng, W., Hu, J. J., *Noda, N. N. and *Zhang, H. Structural basis of the differential function of the two C. elegans Atg8 homologs, LGG-1 and LGG-2, in autophagy. Mol. Cell<\/strong> 60, 914-929 (2015). DOI: 10.1016\/j.molcel.2015.11.019<\/li>\r\nYamamoto, H., Shima, T., Yamaguchi, M., Mochizuki, Y., Hoshida, H., Kakuta, S., Kondo-Kakuta, C., Noda, N. N., Inagaki, F., Itoh, T., Akada, R. and *Ohsumi, Y. The thermotolerant yeast Kluyveromyces marxianus is a useful organism for structural and biochemical studies of autophagy. J. Biol. Chem.<\/strong> 290, 29506-29518 (2015). DOI: 10.1074\/jbc.M115.684233<\/li>\r\nSuzuki, H., Kaizuka, T., *Mizushima, N. and *Noda, N. N. Structure of the Atg101\u2013Atg13 complex reveals essential roles of Atg101 in autophagy initiation. Nat. Struct. Mol. Biol.<\/strong> 22, 572-580 (2015). DOI: 10.1038\/nsmb.3036<\/li>\r\nFujioka, Y., Suzuki, S. W., Yamamoto, H., Kondo-Kakuta, C., Kimura, Y., Hirano, H., Akada, R., Inagaki, F., *Ohsumi, Y. and *Noda, N. N. Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat. Struct. Mol. Biol.<\/strong> 21, 513-521 (2014). DOI: 10.1038\/nsmb.2822<\/li>\r\n*Suzuki, K., Nakamura, S., Morimoto, M., Fujii, K., Noda, N. N., Inagaki, F. and Ohsumi, Y. Proteomic Profiling of Autophagosome Cargo in Saccharomyces cerevisiae. PLoS One<\/strong> 9, e91651 (2014). DOI: 10.1371\/journal.pone.0091651. eCollection 2014<\/li>\r\nTamura, N., Oku, M., Ito, M., Noda, N. N., Inagaki, F. and *Sakai, Y. Atg18 phosphoregulation controls organellar dynamics by modulating its phosphoinositide-binding activity. J. Cell Biol.<\/strong> 202, 685-98 (2013). DOI: 10.1083\/jcb.20130206<\/li>\r\nTsuganezawa, K., Shinohara, Y., Ogawa, N., Tsuboi, S., Okada, N., Mori, M., Yokoyama, S., Noda, N. N., Inagaki, F., Ohsumi, Y. and *Tanaka, A. Two-colored FCS screening for LC3-p62 interaction inhibitors. J. Biolmol. Screen.<\/strong> 18, 1103-9 (2013). DOI: 10.1177\/1087057113492200<\/li>\r\nSakoh-Nakatogawa, M., Matoba, K., Asai, E., Kirisako, H., Ishii, J., Noda, N. N., Inagaki, F., *Nakatogawa, H. and *Ohsumi, Y. Atg12-Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nat. Struct. Mol. Biol.<\/strong> 20, 433-9 (2013). DOI:10.1038\/nsmb.2527<\/li>\r\n*Noda, N. N., Fujioka, Y., Hanada, T., Ohsumi, Y. and *Inagaki, F. Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep.<\/strong> 14, 206-11 (2013). DOI:10.1038\/embor.2012.208<\/li>\r\nNyirenda J., Matsumoto, S., Saitoh, T., Maita, N., Noda, N. N., Inagaki, F. and *Koda, D. Crystallographic and NMR evidence for flexibility in oligosaccharyltransferases and its catalytic significance. Structure<\/strong> 21, 32-41 (2013). DOI: 10.1016\/j.str.2012.10.011<\/li>\r\nYamaguchi, M., Matoba, K., Sawada, R., Fujioka, Y., Nakatogawa, H., Yamamoto, H., Kobashigawa, Y., Hoshida, H., Akada, R., Ohsumi, Y., *Noda, N. N. and *Inagaki, F. Non-canonical recognition and Ubl-loading of distinct E2s by autophagy-essential Atg7. Nat. Struct. Mol. Biol.<\/strong> 19, 1250-6 (2012). DOI:10.1038\/nsmb.2451<\/li>\r\nWatanabe, Y., Kobayashi, T., Yamamoto, H., Hoshida, H., Akada, R., Inagaki, F., Ohsumi, Y. and *Noda, N. N. Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J. Biol. Chem.<\/strong> 287, 31681-90 (2012). DOI: 10.1074\/jbc.M112.397570<\/li>\r\nHayashi, T., Senda, M., Morohashi, H., Higashi, H., Horio, M., Kashiba, Y., Nagase, L., Sasaya, D., Shimizu, T., Venugopalan, N., Kumeta, H., Noda, N. N., Inagaki, F., *Senda, T. and *Hatakeyama, M. Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. Cell Host & Microbe<\/strong> 12, 20-33 (2012). DOI: 10.1016\/j.chom.2012.05.010<\/li>\r\n*Nakatogawa, H., Ohbayashi, S., Sakoh-Nakatogawa, M., Kakuta, S., Suzuki, S. W., Kirisako, H., Kondo-Kakuta, C., Noda, N. N., Yamamoto, H. and Ohsumi, Y. The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation. J. Biol. Chem.<\/strong> 287, 28503-7 (2012). DOI: 10.1074\/jbc.C112.387514<\/li>\r\nWu, F., Li, Y., Wang, F., Noda, N. N. and *Zhang, H. Differential function of the two Atg4 homologues in the aggrephagy pathway in C. elegans. J. Biol. Chem.<\/strong> 287, 29457-67 (2012). DOI: 10.1074\/jbc.M112.365676<\/li>\r\nYamaguchi, M., *Noda, N. N., Yamamoto, H., Shima, T., Kumeta, H., Kobashigawa, Y., Akada, R., Ohsumi, Y. and *Inagaki, F. Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Structure<\/strong> 20, 1244-54 (2012). DOI:10.1016\/j.str.2012.04.018<\/li>\r\nMatsumoto, S., Igura, M., Nyirenda, J., Matsumoto, M., Yuzawa, S., Noda, N., Inagaki, F. and *Kohda, D. Crystal structure of the C-terminal globular domain of oligosaccharyltransferase from Archaeoglobus fulgidus at 1.75 \u00c5 resolution. Biochemistry<\/strong> 51, 4157-66 (2012). DOI:10.1021\/bi300076u<\/li>\r\n*Noda, N. N., Kobayashi, T., Adachi, W., Fujioka, Y., Ohsumi, Y. and *Inagaki, F. Structure of the novel C-terminal domain of vacuolar protein sorting 30\/autophagy-related protein 6 and its specific role in autophagy. J. Biol. Chem.<\/strong> 287, 16256-66 (2012). DOI: 10.1074\/jbc.M112.348250<\/li>\r\nKondo-Okamoto, N., Noda, N. N., Suzuki, S. W., Nakatogawa, H., Takahashi, I., Matsunami, M., Hashimoto, A., Inagaki, F., Ohsumi, Y. and *Okamoto, K. Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J. Biol. Chem.<\/strong> 287, 10631-8 (2012). DOI: 10.1074\/jbc.M111.299917<\/li>\r\n*Noda, N. N., Satoo, K., Fujioka, Y., Kumeta, H., Ogura, K., Nakatogawa, H., Ohsumi, Y. and *Inagaki, F. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol. Cell<\/strong> 44, 462-75 (2011). DOI:10.1016\/j.molcel.2011.08.035<\/li>\r\nKobashigawa, Y., Tomitaka, A., Kumeta, H., Noda, N. N., Yamaguchi, M. and *Inagaki, F. Autoinhibition and phosphorylation-induced activation mechanisms of human cancer and autoimmune disease-related E3 protein Cbl-b. Proc. Natl. Acad. Sci. U. S. A.<\/strong> 108, 20579-84 (2011). DOI: 10.1073\/pnas.1110712108<\/li>\r\n<\/ul>\r\n\r\n\r\n\r\n\u00a0<\/div>\r\n\r\n\r\n\r\n
Reviews<\/h5>\r\n\r\n\r\n\r\n\r\n- *Komatsu, M., *Inada, T. and *Noda, N. N. The UFM1 system: Working principles, cellular functions, and pathophysiology. Mol.Cell<\/strong> 84, 156-169 (2024). DOI: 10.1016\/j.molcel.2023.11.034.<\/li>\r\n
- Maruyama, T., Hama, Y. and *Noda, N. N. Mechanisms of mitochondrial reorganization. J.Biochem.<\/strong> 175, 167-178 (2024). DOI: 10.1093\/jb\/mvad098.<\/li>\r\n
- *Noda, N. N. Structural view on autophagosome formation. FEBS Lett.<\/strong> 598, 84-106 (2024). DOI: 10.1002\/1873-3468.14742.<\/li>\r\n
- *Noda, N. N. Structural biology of the Atg8 and Atg12 conjugation systems. Autophagy Rep.<\/strong> 2, 2277582 (2023).<\/li>\r\n
- *Fukuda, T., Furukawa, K., Maruyama, T., Noda, N. N. and *Kanki, T. Mitofissin: a novel mitochondrial fission protein that facilitates mitophagy.Autophagy<\/strong> 19, 3019-3021 (2023). DOI: 10.1080\/15548627.2023.2237343.<\/li>\r\n
- Hama, Y., Ogasawara, Y., and *Noda, N. N. Autophagy and cancer: basic mechanisms and inhibitor development. Cancer Sci.<\/strong> 114, 2699-2708 (2023). DOI: 10.1111\/cas.15803<\/li>\r\n
- Osawa, T., Matoba, K. and *Noda, N. N. Lipid transport from endoplasmic reticulum to autophagic membranes.\u00a0Cold Spring Harb. Perspect. Biol.<\/strong> 14, a041254 (2022).DOI: 10.1101\/cshperspect.a041254<\/li>\r\n
- *Noda, N. N. Cytoskeleton grows p62 condensates for autophagy.\u00a0Cell Res.<\/strong>\u00a032, 607-608 (2022). DOI: 10.1038\/s41422-022-00671-5<\/li>\r\n
- Valentine, W. J., Yanagida, K., Kawana, H., Kono, N., Noda, N. N., Aoki, J. and Shindou, H. Update and nomenclature proposal for mammalian lysophospholipid acyltransferases which create membrane phospholipid diversity. J. Biol. Chem.<\/strong> 298, 101470 (2021). DOI: 10.1016\/j.jbc.2021.101470<\/li>\r\n
- Maruyama, T. and *Noda, N. N. Delineating the lipidated Atg8 structure for unveiling its hidden activity in autophagy. Autophagy<\/strong> 12, 1-2 (2021). DOI: 10.1080\/15548627.2021.1961075.<\/li>\r\n
- *Noda, N. N. Atg2 and Atg9: Intermembrane and interleaflet lipid transporters driving autophagy. Biochim. Biophys. Acta Mol. Cell Biol. Lipids<\/strong> 1866, 158956 (2021). DOI: 10.1016\/j.bbalip.2021.158956.<\/li>\r\n
- Matoba, K. and *Noda, N. N. Structural catalog of core Atg proteins opens new era of autophagy research. J. Biochem.<\/strong> 169, 517-525 (2021). DOI: 10.1093\/jb\/mvab017.<\/li>\r\n
- Fujioka, Y. and *Noda, N. N. Biomolecular condensates in autophagy regulation. Curr. Opin. Cell Biol.<\/strong> 69, 23-29 (2021). DOI: 10.1016\/j.ceb.2020.12.011.<\/li>\r\n
- Matoba, K. and *Noda, N. N. Secret of Atg9: lipid scramblase activity drives de novo autophagosome biogenesis. Cell Death Diff.<\/strong> 27, 3386-3388 (2020). DOI: 10.1038\/s41418-020-00663-1.<\/li>\r\n
- Alam, J. M. and *Noda, N. N. In vitro reconstitution of autophagic processes. Biochem. Soci Trans.<\/strong> 48, 2003-2014 (2020). DOI: 10.1042\/BST20200130.<\/li>\r\n
- *Noda, N. N., Wang, Z. and *Zhang, H. Liquid-liquid phase separation in autophagy. J. Cell Biol.<\/strong> 219, e202004062 (2020). DOI: 10.1083\/jcb.202004062.<\/li>\r\n
- Osawa, T. and *Noda, N. N. Atg2: a novel phospholipid transfer protein that mediates de novo autophagosome biogenesis. Protein Sci.<\/strong> 28, 1005-1012 (2019). DOI: 10.1002\/pro.3623.<\/li>\r\n
- Yamasaki, A., Watanabe, Y. and *Noda, N. N. Structural studies of selective autophagy in yeast. Methods Mol. Biol.<\/strong> 1880, 77-90 (2019). DOI: 10.1007\/978-1-4939-8873-0_4.<\/li>\r\n
- Osawa, T., Alam, J. M. and *Noda, N. N. Membrane-binding domains in autophagy. Chem. Phys. Lipids<\/strong> 218, 1-9 (2019). DOI: 10.1016\/j.chemphyslip.2018.11.001.<\/li>\r\n
- Maruyama, T. and *Noda, N. N. Autophagy-essential protease Atg4: Structure, function, regulation and inhibition. J. Antibiot.<\/strong> 71, 72\u201378 (2018). DOI: 10.1038\/ja.2017.104.<\/li>\r\n
- Yamasaki, A. and *Noda, N. N. Structural biology of the Cvt pathway. J. Mol. Biol.<\/strong> 429, 531-542 (2017). DOI: 10.1016\/j.jmb.2017.01.003.<\/li>\r\n
- Suzuki, H., Osawa, T., Fujioka, Y. and *Noda, N. N. Structural biology of the core autophagy machinery. Curr. Opin. Struct. Biol.<\/strong> 43, 10-17 (2017). DOI: 10.1016\/j.sbi.2016.09.010<\/li>\r\n
- Wu, F., Wang, P., Shen, Y., Noda, N. N. and *Zhang, H. Small differences make a big impact: Structural insights into the differential function of the 2 Atg8 homologs in C. elegans. Autophagy<\/strong> 12, 606-607 (2016). DOI: 10.1080\/15548627.2015.1137413<\/li>\r\n
- *Noda, N. N. and *Mizushima, N. Atg101: not just an accessory subunit in the autophagy-initiation complex. Cell Struct. Funct.<\/strong> 41, 13-20 (2016). DOI: 10.1247\/csf.15013<\/li>\r\n
- Suzuki, H., Kaizuka, T., Mizushima, N. and *Noda, N. N. Open and closed HORMAs regulate autophagy initiation. Autophagy<\/strong> 11, 2123-2124 (2015). DOI: 10.1080\/15548627.2015.1091144<\/li>\r\n
- *Noda, N. N. and Fujioka, Y. Atg1 family kinases in autophagy initiation. Cell. Mol. Life Sci.<\/strong> 72, 3083-96 (2015). DOI: 10.1007\/s00018-015-1917-z<\/li>\r\n
- *Noda, N. N. and *Inagaki, F. Mechanisms of autophagy. Annu. Rev. Biophys.<\/strong> 44, 101-122 (2015). DOI: 10.1146\/annurev-biophys-060414-034248<\/li>\r\n<\/ul>\r\n\r\n\r\n\r\n
\u00a0<\/div>\r\n\r\n\r\n\r\n
Japanese reviews<\/h5>\r\n\r\n\r\n\r\n\r\n- \u91ce\u7530\u5c55\u751f\u300c\u30bf\u30f3\u30d1\u30af\u8cea\u306e\u6db2-\u6db2\u76f8\u5206\u96e2\u2015\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u3092\u4f8b\u306b\u300d\u5b9f\u9a13\u533b\u5b66\u5897\u520a 40, No.12, 237-243 (2022).<\/li>\r\n
- \u85e4\u5ca1\u512a\u5b50\u300c\u7cbe\u88fdAtg\u30bf\u30f3\u30d1\u30af\u8cea\u3092\u7528\u3044\u305fin vitro\u6db2\u6ef4\u5f62\u6210\u3068\u86cd\u5149\u89b3\u5bdf\u300d\u5b9f\u9a13\u533b\u5b66\u5225\u518a\u300c\u30d5\u30ed\u30f3\u30c8\u30e9\u30f3\u30ca\u30fc\u76f4\u4f1d \u76f8\u5206\u96e2\u89e3\u6790\u30d7\u30ed\u30c8\u30b3\u30fc\u30eb\u300d\u52a0\u85e4\u660c\u4eba\uff0c\u767d\u6728\u8ce2\u592a\u90ce\uff0c\u4e2d\u5ddd\u771f\u4e00\u7de8\uff0c40-49 (2022).<\/li>\r\n
- \u91ce\u7530\u5c55\u751f\u300c\u86cb\u767d\u8cea\u306e\u6db2\uff0d\u6db2\u76f8\u5206\u96e2\u300d\u7d30\u80de\uff0c53\uff0c529-532 (2021).<\/li>\r\n
- \u80fd\u4ee3\u5927\u8f14\uff0c\u91ce\u7530\u5c55\u751f\u300c\u6db2\uff0d\u6db2\u76f8\u5206\u96e2\u3068\u9078\u629e\u7684\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u300d\u5b9f\u9a13\u533b\u5b66\uff0c39\uff0c2046-2051 (2021).<\/li>\r\n
- \u85e4\u5ca1\u512a\u5b50\uff0c\u91ce\u7530\u5c55\u751f\u300c\u76f8\u5206\u96e2\u3067\u898b\u76f4\u3059\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u300d\u5b9f\u9a13\u533b\u5b66, 39, 10, 172-177 (2021).<\/li>\r\n
- \u85e4\u5ca1\u512a\u5b50\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u3068\u6db2\uff0d\u6db2\u76f8\u5206\u96e2\u300d\u533b\u5b66\u306e\u3042\u3086\u307f 272, 9, 763-768 (2020).<\/li>\r\n
- \u85e4\u5ca1\u512a\u5b50\uff0c*\u91ce\u7530\u5c55\u751f\u300c\u5929\u7136\u5909\u6027\u30bf\u30f3\u30d1\u30af\u8cea\u306b\u3088\u308b\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u59cb\u52d5\u6db2\u6ef4\u306e\u5f62\u6210\u300d\u751f\u7269\u7269\u7406, 60, 171-173 (2020).<\/li>\r\n
- \u85e4\u5ca1\u512a\u5b50\uff0c\u91ce\u7530\u5c55\u751f\u300c\u6db2\uff0d\u6db2\u76f8\u5206\u96e2\u306b\u3088\u308b\u30aa\u30fc\u30c8\u30d5\u30a1\u30b4\u30bd\u30fc\u30e0\u306e\u5f62\u6210\u90e8\u4f4d\u306e\u69cb\u7bc9\u300d\u5b9f\u9a13\u533b\u5b66, 38, 1354-1357 (2020).<\/li>\r\n
- \u80fd\u4ee3\u5927\u8f14\uff0c\u91ce\u7530\u5c55\u751f\u300c\u67d4\u3089\u304b\u3044\u69cb\u9020\u306e\u53ef\u8996\u5316\u2460LLPS\u3068\u819c\u52d5\u614b\u3092\u4f8b\u306b\u300d\u5b9f\u9a13\u533b\u5b66\uff0c38\uff0c84-89 (2020).<\/li>\r\n
- *\u91ce\u7530\u5c55\u751f\u300c\u9078\u629e\u7684\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u306e\u69cb\u9020\u751f\u7269\u5b66\u7684\u57fa\u76e4\u300d\u533b\u5b66\u306e\u3042\u3086\u307f, 272, 769-775 (2020).<\/li>\r\n
- *\u91ce\u7530\u5c55\u751f\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u306e\u69cb\u9020\u751f\u7269\u5b66\u7b2c\u4e8c\u7ae0\u300d\u751f\u5316\u5b66, 91, 611-619 (2019).<\/li>\r\n
- *\u91ce\u7530\u5c55\u751f\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b4\u30bd\u30fc\u30e0\u3092\u3064\u304f\u308b\u305f\u3081\u306e\u8102\u8cea\u3092\u4f9b\u7d66\u3059\u308b\u4ed5\u7d44\u307f\u300dFRAGRANCE JOURNAL, 47, No. 8, 26-29 (2019).<\/li>\r\n
- *\u91ce\u7530\u5c55\u751f\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b4\u30bd\u30fc\u30e0\u5f62\u6210\u306e\u5206\u5b50\u6a5f\u69cb\u300d\u533b\u5b66\u306e\u3042\u3086\u307f\uff0c267\uff0c1014-1018 (2018).<\/li>\r\n
- *\u91ce\u7530\u5c55\u751f\u300c\u30bf\u30f3\u30d1\u30af\u8cea\u3092\u5206\u89e3\u3057\u3066\u518d\u5229\u7528\u3059\u308b\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u306e\u4ed5\u7d44\u307f\u300d\u65e5\u672c\u306e\u79d1\u5b66\u8005, 53, 427-433 (2018).<\/li>\r\n
- *\u91ce\u7530\u5c55\u751f\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u3092\u5236\u5fa1\u3059\u308b\u30bf\u30f3\u30d1\u30af\u8cea\u7fa4\u306e\u69cb\u9020\u3068\u6a5f\u80fd\u300d\u30d0\u30a4\u30aa\u30b5\u30a4\u30a8\u30f3\u30b9\u3068\u30a4\u30f3\u30c0\u30b9\u30c8\u30ea\u30fc, 76, 12-19 (2018).<\/li>\r\n
- *\u91ce\u7530\u5c55\u751f\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u3067\u904b\u3070\u308c\u308b\u30bf\u30f3\u30d1\u30af\u8cea\u306e\u69cb\u9020\u300d\u30d0\u30a4\u30aa\u30b5\u30a4\u30a8\u30f3\u30b9\u3068\u30a4\u30f3\u30c0\u30b9\u30c8\u30ea\u30fc, 76, 10-11 (2018).<\/li>\r\n
- *\u91ce\u7530\u5c55\u751f\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u306e\u59cb\u52d5\u6a5f\u69cb\u3092\u89b3\u308b\u300d\u533b\u5b66\u306e\u3042\u3086\u307f, 262, 373-378 (2017).<\/li>\r\n
- \u6e21\u908a\u5eb7\u7d00\uff0c*\u91ce\u7530\u5c55\u751f\u300c\u9078\u629e\u7684\u306a\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u306b\u6a5f\u80fd\u3059\u308b\u7dda\u866b\u306b\u304a\u3051\u308bAtg8\u306e\u30db\u30e2\u30ed\u30b0LGG-1\u3068LGG-2\u306e\u69cb\u9020\u304a\u3088\u3073\u6a5f\u80fd\u306e\u9055\u3044\u300d\u30e9\u30a4\u30d5\u30b5\u30a4\u30a8\u30f3\u30b9\u65b0\u7740\u8ad6\u6587\u30ec\u30d3\u30e5\u30fc<\/strong> \uff08http:\/\/first.lifesciencedb.jp\/archives\/12065\uff092016\u5e741\u670812\u65e5<\/li>\r\n
- *\u9234\u6728\u6d69\u5178\uff0c*\u91ce\u7530\u5c55\u751f\u300c\u9ad8\u7b49\u751f\u7269\u306e\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u59cb\u52d5\u306b\u5fc5\u9808\u306a\u56e0\u5b50Atg101\u306e\u69cb\u9020\u3068\u6a5f\u80fd\u300d\u65e5\u672c\u7d50\u6676\u5b66\u4f1a\u8a8c<\/strong>, 57, 324-330 (2015). DOI: 10.5940\/jcrsj.57.324<\/li>\r\n
- \u85e4\u5ca1\u512a\u5b50\uff0c*\u91ce\u7530\u5c55\u751f\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u306e\u59cb\u52d5\u3092\u5236\u5fa1\u3059\u308b\u8907\u5408\u4f53\u306e\u7acb\u4f53\u69cb\u9020\u300d\u65e5\u672c\u7d50\u6676\u5b66\u4f1a\u8a8c<\/strong>, 57, 191-197 (2015). DOI: 10.5940\/jcrsj.57.191<\/li>\r\n
- \u9234\u6728\u6d69\u5178\uff0c*\u91ce\u7530\u5c55\u751f\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u59cb\u52d5\u8907\u5408\u4f53\u306b\u304a\u3051\u308b\u9ad8\u7b49\u751f\u7269\u306b\u56fa\u6709\u306a\u30bf\u30f3\u30d1\u30af\u8ceaAtg101\u306e\u69cb\u9020\u3068\u6a5f\u80fd\u300d\u30e9\u30a4\u30d5\u30b5\u30a4\u30a8\u30f3\u30b9\u65b0\u7740\u8ad6\u6587\u30ec\u30d3\u30e5\u30fc<\/strong>\uff08http:\/\/first.lifesciencedb.jp\/archives\/10350\uff092015\u5e746\u670823\u65e5<\/li>\r\n
- *\u91ce\u7530\u5c55\u751f\uff0c*\u7a32\u57a3\u51ac\u5f66\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b4\u30bd\u30fc\u30e0\u306e\u5f62\u6210\u306b\u304b\u304b\u308f\u308b\u30bf\u30f3\u30d1\u30af\u8cea\u306e\u69cb\u9020\u3068\u5206\u5b50\u6a5f\u80fd\u300d\u9818\u57df\u878d\u5408\u30ec\u30d3\u30e5\u30fc<\/strong>\uff0c3, e012 (2014)<\/li>\r\n
- *\u91ce\u7530\u5c55\u751f\uff0c\u7a32\u57a3\u51ac\u5f66\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u306e\u4f5c\u52d5\u6a5f\u69cb\u300d\u5b9f\u9a13\u533b\u5b66<\/strong>\uff0c32, 1612-1616 (2014)<\/li>\r\n
- \u85e4\u5ca1\u512a\u5b50\uff0c*\u91ce\u7530\u5c55\u751f\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u59cb\u52d5\u8907\u5408\u4f53\u306e\u5f62\u6210\u306e\u69cb\u9020\u57fa\u76e4\u300d\u30e9\u30a4\u30d5\u30b5\u30a4\u30a8\u30f3\u30b9\u65b0\u7740\u8ad6\u6587\u30ec\u30d3\u30e5\u30fc<\/strong>\uff08http:\/\/first.lifesciencedb.jp\/archives\/8761\uff092014\u5e745\u670826\u65e5 DOI: 10.7875\/first.author.2014.067<\/li>\r\n
- *\u91ce\u7530\u5c55\u751f\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u306e\u69cb\u9020\u751f\u7269\u5b66\u300d\u751f\u5316\u5b66<\/strong>\uff0c85\uff0c762-774 (2013).<\/li>\r\n
- *\u91ce\u7530\u5c55\u751f\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u306e\u69cb\u9020\u751f\u7269\u5b66 \u4e3b\u8981Atg\u56e0\u5b50\u306e\u69cb\u9020\u306e\u6700\u65b0\u50cf\u3068\u672a\u89e3\u6c7a\u8ab2\u984c\u300d\u5b9f\u9a13\u533b\u5b66<\/strong>\uff0c31\uff0c1355-1361 (2013).<\/li>\r\n
- \u5c71\u53e3\u96c5\u4e5f\uff0c\u91ce\u7530\u5c55\u751f\uff0c*\u7a32\u57a3\u51ac\u5f66\u300c\u30e6\u30d3\u30ad\u30c1\u30f3\u69d8\u30bf\u30f3\u30d1\u30af\u8cea\u6d3b\u6027\u5316\u9175\u7d20Atg7\u306f2\u3064\u306e\u30e6\u30d3\u30ad\u30c1\u30f3\u69d8\u30bf\u30f3\u30d1\u30af\u8cea\u7d50\u5408\u9175\u7d20Atg3\u3068Atg10\u3068\u3092\u533a\u5225\u3057\u306a\u3044\u300d\u30e9\u30a4\u30d5\u30b5\u30a4\u30a8\u30f3\u30b9\u65b0\u7740\u8ad6\u6587\u30ec\u30d3\u30e5\u30fc\uff08http:\/\/first.lifesciencedb.jp\/archives\/6186\uff092012\u5e7412\u67083\u65e5<\/li>\r\n
- *\u91ce\u7530\u5c55\u751f\u300cAtg7\u3068\u305d\u306eAtg8\u7d50\u5408\u578b\u306e\u7acb\u4f53\u69cb\u9020\u300d\u65e5\u672c\u7d50\u6676\u5b66\u4f1a\u8a8c<\/strong>, 54, 166-171 (2012). DOI:10.5940\/jcrsj.54.166<\/li>\r\n
- \u91ce\u7530\u5c55\u751f\uff0c*\u7a32\u57a3\u51ac\u5f66\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u306b\u6a5f\u80fd\u3059\u308b\u30e6\u30d3\u30ad\u30c1\u30f3\u6d3b\u6027\u5316\u9175\u7d20Atg7\u306e\u69cb\u9020\u3068\u305d\u306e\u30e6\u30cb\u30fc\u30af\u306aAtg8\u6d3b\u6027\u5316\u306e\u6a5f\u69cb\u300d\u30e9\u30a4\u30d5\u30b5\u30a4\u30a8\u30f3\u30b9\u65b0\u7740\u8ad6\u6587\u30ec\u30d3\u30e5\u30fc\uff08http:\/\/first.lifesciencedb.jp\/archives\/3954\uff092011\u5e7411\u670829\u65e5<\/li>\r\n<\/ul>\r\n\r\n\r\n\r\n
\u00a0<\/div>\r\n\r\n\r\n\r\n
Press releases<\/h5>\r\n\r\n\r\n\r\n\r\n- \u79d1\u5b66\u65b0\u805e\uff082021.8.6\uff09\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b4\u30bd\u30fc\u30e0\u52b9\u7387\u3088\u304f\u4f5c\u308b\u4ed5\u7d44\u307f \u5fae\u5316\u7814\u306a\u3069\u89e3\u660e Atg8\u306e\u6d3b\u6027\u304c\u9375\u300d<\/li>\r\n
- \u65e5\u520a\u5de5\u696d\u65b0\u805e\uff082020.10.27\uff09\u300c\u5fae\u5316\u7814\u3001\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u306e\u2f00\u7aef\u89e3\u660e \u6a5f\u80fd\u672a\u77e5\u305f\u3093\u3071\u304f\u8cea\u3001\u8102\u8cea\u819c\u4f38\u5c55\u306b\u95a2\u4e0e\u300d<\/li>\r\n
- \u65e5\u7d4c\u30d0\u30a4\u30aa\u30c6\u30af\uff082020.2.18\uff09\u300c\u5fae\u5316\u7814\u3001\u300c\u6db2\u30fc\u6db2\u76f8\u5206\u96e2\u300d\u3068\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u306e\u8ad6\u2f42\u76f8\u6b21\u304e\u767a\u8868\u300d<\/li>\r\n
- \u65e5\u7d4c\u30d0\u30a4\u30aa\u30c6\u30af\uff082020.2.6\uff09\u300c\u300c\u6db2\uff0d\u6db2\u76f8\u5206\u96e2\u300d\u304c\u62c5\u3046\u86cb\u767d\u8cea\u306e\u54c1\u8cea\u7ba1\u7406\u3001\u65e5\u672c\u52e2\u304c\u8ad6\u65872\u5831\u3092Nature\u3067\u767a\u8868\u300d<\/li>\r\n
- \u5316\u5b66\u5de5\u696d\u65e5\u5831\uff082020.2.7\uff09\u300c\u5fae\u5316\u7814\uff0d\u6771\u2f24\u306a\u3069\u3001\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u69cb\u9020\u4f53\u306e\u5b9f\u4f53\u89e3\u660e\u300d<\/li>\r\n
- \u6642\u4e8b\u901a\u4fe1\uff082020.2.6\uff09\u300c\u300c\u3054\u307f\u888b\u300d\u306f\u6db2\u6ef4\u304b\u3089\u5f62\u6210 \u9175\u6bcd\u306e\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\uff0d\u5fae\u5316\u7814\u300d<\/li>\r\n
- \u6642\u4e8b\u901a\u4fe1\uff082020.1.29\uff09\u300c\u6db2\u4f53\u72b6\u305f\u3093\u3071\u304f\u304c\u5206\u89e3\u3057\u3084\u3059\u3044\uff1d\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u3067\u767a\u2f92\uff0d\u5fae\u5316\u7814\u300d<\/li>\r\n
- \u65e5\u7d4c\u30b5\u30a4\u30a8\u30f3\u30b9\uff082019.11\uff09\u300c\u81a8\u5927\u306a\u5206\u6790\u3068\u67d4\u8edf\u306a\u767a\u60f3 \u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u306b\u8feb\u308b\u300d<\/li>\r\n
- \u65e5\u672c\u7d4c\u6e08\u65b0\u805e\uff082019.5.31\u671d\u520a\uff09\u300c\u7d30\u80de\u306e\u8001\u5316\u6a5f\u69cb\u306b\u8feb\u308b\u300d<\/li>\r\n
- \u8aad\u58f2\u65b0\u805e\uff082019.4.19\u5915\u520a\uff09\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc \u4ed5\u7d44\u307f\u306e\u2f00\u7aef\u89e3\u660e\u300d<\/li>\r\n
- \u65e5\u672c\u7d4c\u6e08\u65b0\u805e\uff082019.3.26\u5915\u520a\uff09\u300c\u7d30\u80de\u81ea\u98df\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u300d\u306e\u767a\u751f\u3000\u4ed5\u7d44\u307f\u306e\u4e00\u7aef\u3092\u89e3\u660e\u3000\u5fae\u5316\u7814\u306a\u3069\uff0c\u518d\u73fe\u3092\u76ee\u6307\u3059\u300d<\/li>\r\n
- \u7523\u7d4c\u65b0\u805e\uff082019.3.26\uff09\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u306e\u4ed5\u7d44\u307f\u300c\uff16\u5272\u5206\u304b\u3063\u305f\u300d\u300d<\/li>\r\n
- \u65e5\u520a\u5de5\u696d\u65b0\u805e\uff082019.3.26\uff09\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u306e\u201c\u30b4\u30df\u888b\u201d\u6750\u6599\u904b\u642c\u306e\u4ed5\u7d44\u307f\u89e3\u660e\u3000\u5fae\u5316\u7814\u30fb\u6771\u5de5\u5927\u300d<\/li>\r\n
- \u5316\u5b66\u5de5\u696d\u65e5\u5831\uff082019.3.26\uff09\u300c\u5fae\u5316\u7814\u306a\u3069\u3001\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u5b8c\u5168\u7406\u89e3\u3078\u524d\u9032\u3001\u9694\u96e2\u819c\u6210\u2ed1\u306e\u6a5f\u69cb\u89e3\u660e\u300d<\/li>\r\n
- \u6642\u4e8b\u901a\u4fe1\uff082019.3.26\uff09\u300c\u7d30\u80de\u5185\u300c\u3054\u307f\u888b\u300d\u2f63\u6210\u904e\u7a0b\u89e3\u660e\uff1d\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u306e\u4ed5\u7d44\u307f\uff0d\u5fae\u5316\u7814\u306a\u3069\u300d<\/li>\r\n
- \u65e5\u520a\u5de5\u696d\u65b0\u805e\uff082016.8.31\uff09\u300c\u9769\u65b0\u306e\u7cfb\u8b5c\u30fb\u65e5\u672c\u306e\u79d1\u5b66\u6280\u8853\u529b\uff0f\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\uff0d\u75c5\u6c17\u3084\u8001\u5316\u3068\u306e\u95a2\u9023\u660e\u3089\u304b\u306b\u300d<\/li>\r\n
- \u671d\u65e5\u65b0\u805e\u30c7\u30b8\u30bf\u30eb\uff082016.7.12\uff09\u300c\u7d30\u80de\u306e\u518d\u5229\u7528\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u300d\u3001\u52d5\u304d\u51fa\u3057\u306e\u4ed5\u7d44\u307f\u89e3\u660e\u300d<\/li>\r\n
- \u30de\u30a4\u30ca\u30d3\u30cb\u30e5\u30fc\u30b9\uff082016.7.12\uff09\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u306e\u521d\u671f\u904e\u7a0b\u306b\u50cd\u304f\u5de8\u5927\u8907\u5408\u4f53\u306e\u4ed5\u7d44\u307f\u3092\u89e3\u660e\u300d<\/li>\r\n
- \u65e5\u520a\u5de5\u696d\u65b0\u805e\uff082016.7.12\uff09\u300c\u30aa\u30fc\u30c8\u30d5\u30a1\u30b8\u30fc\u59cb\u52d5\u305f\u3093\u3071\u304f\u8cea\u304c\u5de8\u5927\u5316\u3059\u308b\u4ed5\u7d44\u307f\u89e3\u660e\u300d<\/li>\r\n
- \u6bce\u65e5\u65b0\u805e\uff082016.7.12\u6771\u4eac\u671d\u520a\uff09\u300c\u81ea\u98df\u4f5c\u7528\u3000\u30b9\u30a4\u30c3\u30c1\u89e3\u660e\u3000\u5065\u5eb7\u7dad\u6301\u3059\u308b\u50cd\u304d\u300d<\/li>\r\n
- \u6bce\u65e5\u65b0\u805e\uff082016.7.12\u897f\u90e8\u671d\u520a\uff09\u300c\u81ea\u98df\u4f5c\u7528\uff1a\u7d30\u80de\u306e\u4f5c\u7528\u3092\u89e3\u660e\u3000\u6cbb\u7642\u30fb\u4e88\u9632\u3078\u5fdc\u7528\u671f\u5f85\u300d<\/li>\r\n
- \u65e5\u7d4c\u7523\u696d\u65b0\u805e\uff082015.6.2\uff09\u300c\u81ea\u98df\u4f5c\u7528\u306e\u5f15\u304d\u91d1\u89e3\u660e\u300d<\/li>\r\n
- \u65e5\u672c\u7d4c\u6e08\u65b0\u805e\uff082014.5.27\u671d\u520a\uff09\u300c\u7d30\u80de\u306e\u4e0d\u8981\u305f\u3093\u3071\u304f\u8cea\u5206\u89e3\u306e\u4ed5\u7d44\u307f\u89e3\u660e\u300d<\/li>\r\n<\/ul>\r\n","protected":false},"excerpt":{"rendered":"
Publications Original articles Hama, Y., Fujioka, Y., Yamamoto, H., Mizushima, N. and Noda, N. N. The triad in […]<\/p>\n","protected":false},"author":3,"featured_media":0,"parent":0,"menu_order":0,"comment_status":"closed","ping_status":"closed","template":"","meta":[],"_links":{"self":[{"href":"https:\/\/c-mng.cwh.hokudai.ac.jp\/mechanism.igm\/english\/wp-json\/wp\/v2\/pages\/21"}],"collection":[{"href":"https:\/\/c-mng.cwh.hokudai.ac.jp\/mechanism.igm\/english\/wp-json\/wp\/v2\/pages"}],"about":[{"href":"https:\/\/c-mng.cwh.hokudai.ac.jp\/mechanism.igm\/english\/wp-json\/wp\/v2\/types\/page"}],"author":[{"embeddable":true,"href":"https:\/\/c-mng.cwh.hokudai.ac.jp\/mechanism.igm\/english\/wp-json\/wp\/v2\/users\/3"}],"replies":[{"embeddable":true,"href":"https:\/\/c-mng.cwh.hokudai.ac.jp\/mechanism.igm\/english\/wp-json\/wp\/v2\/comments?post=21"}],"version-history":[{"count":27,"href":"https:\/\/c-mng.cwh.hokudai.ac.jp\/mechanism.igm\/english\/wp-json\/wp\/v2\/pages\/21\/revisions"}],"predecessor-version":[{"id":255,"href":"https:\/\/c-mng.cwh.hokudai.ac.jp\/mechanism.igm\/english\/wp-json\/wp\/v2\/pages\/21\/revisions\/255"}],"wp:attachment":[{"href":"https:\/\/c-mng.cwh.hokudai.ac.jp\/mechanism.igm\/english\/wp-json\/wp\/v2\/media?parent=21"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}