\r\nHama, Y., Fujioka, Y., Yamamoto, H., Mizushima, N. and Noda, N. N. The triad interaction of ULK1, ATG13, and FIP200 is required for ULK complex formation and autophagy. eLife<\/strong> reviewed preprint (2024). DOI: 10.7554\/eLife.101531.1<\/p>\r\n<\/li>\r\nAlam, J. M., Maruyama, T., Noshiro, D., Kakuta, C., Kotani, T., Nakatogawa, H. and *Noda, N. N. Complete set of the Atg8-E1-E2-E3 conjugation machinery forms an interaction web that mediates membrane shaping. Nat. Struct. Mol. Biol.<\/strong> 31, 170-178 (2024). DOI: 10.1038\/s41594-023-01132-2<\/li>\r\nNoshiro, D. and *Noda, N. N. Immobilization of lipid nanorods onto two-dimensional crystals of protein tamavidin 2 for high-speed atomic force microscopy. STAR Protocols<\/strong> 4, 102633 (2023). DOI: 10.1016\/j.xpro.2023.102633<\/li>\r\n\r\nMaruyama, T. and *Noda, N. N. Protocol for real-time imaging of membrane fission by mitofissin. STAR Protocols<\/strong> 4, 102590 (2023). DOI: 10.1016\/j.xpro.2023.102590.<\/p>\r\n<\/li>\r\n\r\nIshimura, R., Ito, S., Mao, G., Komatsu-Hirota, S., *Inada, T., *Noda, N. N. and *Komatsu, M. Mechanistic insights into the UFM1 E3 ligase complex in ufmylation and ribosome-associated protein quality control. Sci. Adv.<\/strong> 9, eadh3635 (2023). DOI: 10.1126\/sciadv.adh3635<\/p>\r\n<\/li>\r\nHitomi, K., Kotani, T., Noda, N. N., Kimura, Y. and *Nakatogawa, H. The Atg1 complex, Atg9, and Vac8 recruit PI3K complex I to the pre-autophagosomal structure. J. Cell Biol.<\/strong> 222, e202210017 (2023). DOI: 10.1083\/jcb.202210017<\/li>\r\n\r\nIkeda, R., Noshiro, D., Morishita, H., Takada, S., Kageyama, S., Fujioka, Y., Funakoshi, T., Komatsu-Hirota, S., Arai, R., Ryzhii, E., Abe, M., Koga, T., Motohashi, H., Nakao, M., Sakimura, K., Horii, A., Waguri, S., *Ichimura, Y., *Noda, N. N. and *Komatsu, M. Phosphorylation of phase-separated p62 bodies by ULK1 activates a redox-independent stress response. EMBO J. <\/strong>42, e113349 (2023). DOI: 10.15252\/embj.2022113349<\/p>\r\n<\/li>\r\n\r\nFukuda, T., Furukawa, K., Maruyama, T., Yamashita, S., Noshiro, D., Song, C., Ogasawara, Y., Okuyama, K., Alam, J. M., Hayatsu, M., Saigusa, T., Inoue, K., Ikeda, K., Takai, A., Chen, L., Lahiri, V., Okada, Y., Shibata, S., Murata, K., Klionsky, D. J., *Noda, N. N., and *Kanki, T. The mitochondrial intermembrane space protein mitofissin drives mitochondrial fission required for mitophagy. Mol. Cell<\/strong> 83, 2045\u20132058 (2023). DOI: 10.1016\/j.molcel.2023.04.022<\/p>\r\n<\/li>\r\n\r\nKurusu, R., Fujimoto, Y., *Morishita, H., Noshiro, D., Takada, S., Yamano, K., Tanaka, H., Arai, R., Kageyama, S., Funakoshi, T., Komatsu-Hitrota, S., Taka, H., Kazuno, S., Miura, Y., Koike, M., Wakai, T., Waguri, S., Noda, N. N., and *Komatsu, M. Integrated proteomics identifies p62-dependent selective autophagy of the supramolecular vault complex. Dev. Cell<\/strong> 58, 1189-1205 (2023). DOI: 10.1016\/j.devcel.2023.04.015<\/p>\r\n<\/li>\r\n\r\nIshimura, R., El-Gowily, A. H., Noshiro, D., Komatsu-Hirota, S., Ono, Y., Shindo, M., Hatta, T., Abe, M., Uemura, T., Lee-Okada, H.-C., Mohamed, T. M., Yokomizo, T., Ueno, T., Sakimura, K., Natsume, T., Sorimachi, H., Inada, T., Waguri, S., Noda, N. N. and *Komatsu, M. The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3. Nat. Commun.<\/strong> 13, 7857 (2022).DOI: 10.1038\/s41467-022-35501-0<\/p>\r\n<\/li>\r\nPark, S. W., Jeon, P., Yamasaki, A., Lee, H. E., Choi, H., Mun, J. Y., Jun, Y. W., Park, J. H., Lee, S. H., Lee, S. K., Lee, Y. K., Song, H. K., Lazarou, M., Cho, D. H., Komatsu, M., *Noda, N. N., *Jang, D. J. and *Lee, J. A. Development of new tools to study membrane-anchored mammalian Atg8 proteins. Autophagy<\/strong> 19, 1424-1443 (2023). DOI: 10.1080\/15548627.2022.2132040<\/li>\r\n\r\nCui, J., Ogasawara, Y., Kurata, I, Matoba, K., Fujioka, Y., *Noda, N. N., Shibasaki, M. and *Watanabe, M. Targeting the ATG5-ATG16L1 protein-protein interaction with a hydrocarbon-stapled peptide derived from ATG16L1 for autophagy inhibition. J. Am. Chem. Soci.<\/strong> 144, 17671-17679 (2022).<\/p>\r\n<\/li>\r\nKubota, Y., Fujioka, Y., Patil, A., Takagi, Y., Matsubara, D., Iijima, M., Momose, I., Naka, R., Nakai, K., Noda, N. N. and *Takekawa, M. Qualitative differences in disease-associated MEK mutants reveal molecular signatures and aberrant signaling-crosstalk in cancer. Nat. Commun.<\/strong> 13, 4063 (2022). DOI: 10.1038\/s41467-022-31690-w<\/li>\r\nChino, H., Yamasaki, A., Ode, K. L., Ueda, H. R., *Noda, N. N. and *Mizushima, N. Phosphorylation by casein kinase 2 enhances the interaction between ER-phagy receptor TEX264 and ATG8 proteins. EMBO Rep.<\/strong>23, e54801 (2022). DOI: 10.15252\/embr.202254801.<\/li>\r\nFaruk, M. O., Ichimura, Y., Kageyama, S., Komatsu-Hirota, S., El-Gowily, A. H., Sou, Y. S., Koike, M., Noda, N. N. and *Komatsu, M. Phase-separated protein droplets of amyotrophic lateral sclerosis-associated p62\/SQSTM1 mutants show reduced inner fluidity. J. Biol. Chem.<\/strong> 297, 101405 (2021). DOI: 10.1016\/j.jbc.2021.101405<\/li>\r\nTanigawa, M., Yamamoto, K., Nagatoishi, S., Nagata, K., Noshiro, D., Noda, N. N., Tsumoto, K. and *Maeda, T. A glutamine sensor that directly activates TORC1. Commun. Biol.<\/strong> 4, 1093 (2021). DOI: 10.1038\/s42003-021-02625-w<\/li>\r\nMaruyama, T., Alam, J. M., Fukuda, T., Kageyama, S., Kirisako, H., Ishii, Y., Shimada, I., Ohsumi, Y., Komatsu, M., Kanki, T., Nakatogawa, H. and *Noda, N. N. Membrane perturbation by lipidated Atg8 underlies autophagosome biogenesis. Nat. Struct. Mol. Biol.<\/strong> 28, 583-593 (2021). DOI: 10.1038\/s41594-021-00614-5<\/li>\r\nMatoba, K. and *Noda, N. N. Atg12-Interacting Motif Is Crucial for E2-E3 Interaction in Plant Atg8 System. Biol. Pharm. Bull.<\/strong> 44(9):1337-1343 (2021). DOI: 10.1248\/bpb.b21-00439<\/li>\r\nHamano, F., Matoba, K., Hashidate-Yoshida, T., Suzuki, T., Miura, K., Hishikawa, D., Harayama, T., Yuki, K., Kita, Y., Noda, N. N., Shimizu, T. and *Shindou, H. Mutagenesis and homology modeling reveal a predicted pocket of lysophosphatidylcholine acyltransferase 2 to catch Acyl-CoA. FASEB J.<\/strong> 35, e21501 (2021). DOI: 10.1096\/fj.202002591R<\/li>\r\nKageyama, S., Gudmundsson, S., Sou, Y.-S., Ichimura, Y., Tamura, N., Kazuno, S., Ueno, T., Miura, Y., Noshiro, D., Abe, M., Mizushima, T., Miura, N., Okuda, S., Motohashi, H., Lee, J.-A., Sakimura, K., Ohe, T., Noda, N. N., Waguri, S., *Eskelinen, E.-L. and *Komatsu, M. p62\/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response. Nat. Commun.<\/strong> 12, 16 (2021). DOI: 10.1038\/s41467-020-20185-1<\/li>\r\nKodera, N., Noshiro, D., Dora, S. K., Mori, T., Habchi, J., Blocquel, D., Gruet, A., Dosnon, M., Salladini, E., Bignon, C., Fujioka, Y., Oda, T., Noda, N. N., Sato, M., Lotti, M., Mizuguchi, M., *Longhi, S. and *Ando, T. Structural and dynamics analysis of intrinsically disordered proteins by high speed atomic force microscopy. Nat. Nanotech.<\/strong> 16, 181-189 (2021). DOI: 10.1038\/s41565-020-00798-9<\/li>\r\nMatoba, K., Kotani, T., Tsutsumi, A., Tsuji, T., Mori, T., Noshiro, D., Sugita, Y., Nomura, N., Iwata, S., Ohsumi, Y., Fujimoto, T., Nakatogawa, H., Kikkawa, M. and *Noda, N. N.. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol.<\/strong> 27, 1185-1193 (2020). DOI: 10.1038\/s41594-020-00518-w<\/li>\r\nMochida, K., Yamasaki, A., Matoba, K., Kirisako, H., *Noda, N. N. and *Nakatogawa, H. Super-assembly of ER-phagy receptor Atg40 induces local ER remodeling at contacts with forming autophagosomal membranes. Nat. Commun.<\/strong> 11, 3306 (2020). DOI: 10.1038\/s41467-020-17163-y<\/li>\r\nYamasaki, A., Alam, J. M., Noshiro, D., Hirata, E., Fujioka, Y., Suzuki, K., Ohsumi, Y. and *Noda, N. N. Liquidity is a critical determinant for selective autophagy of protein condensates. Mol. Cell<\/strong> 77, 1163-1175 (2020). DOI: 10.1016\/j.molcel.2019.12.026<\/li>\r\nFujioka, Y., Alam, J. M., Noshiro, D., Mouri, K., Ando, T., Okada, Y., May, A. I., Knorr, R. L., Suzuki, K., Ohsumi, Y. and *Noda, N. N. Phase separation organizes the site of autophagosome formation. Nature<\/strong> 578, 301-305 (2020). DOI: 10.1038\/s41586-020-1977-6<\/li>\r\nOsawa, T., Ishii, Y. and *Noda, N. N. Human ATG2B possesses a lipid transfer activity which is accelerated by negatively charged lipids and WIPI4. Genes Cells<\/strong> 25, 65-70 (2020). DOI: 10.1111\/gtc.12733<\/li>\r\nPang, Y., Yamamoto, H., Sakamoto, H., Oku, M., Mutungi, J. K., Sahani, M. H., Kurikawa, Y., Kita, K., Noda, N. N., Sakai, Y., *Jia, H. and *Mizushima, N. Evolution from covalent conjugation to non-covalent interaction in a ubiquitin-like system. Nat. Struct. Mol. Biol.<\/strong> 26, 289-296 (2019). DOI: 10.1038\/s41594-019-0204-3<\/li>\r\nOsawa, T., Kotani, T., Kawaoka, T., Hirata, E., Suzuki, K., Nakatogawa, H., Ohsumi, Y. and *Noda, N. N. Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nat. Struct. Mol. Biol.<\/strong> 26, 281-288 (2019). DOI: 10.1038\/s41594-019-0203-4<\/li>\r\nNoda, H., Asada, Y., Maruyama, T., Takizawa, N., Noda, N. N., *Shibasaki, M. and *Kumagai, N. A C4N4 Diaminopyrimidine Fluorophore. Chemistry<\/strong> 25, 4299-4304 (2019). DOI: 10.1002\/chem.201900467<\/li>\r\nLiu, X.-M., Yamasaki, A., Du, X.-M., Coffman, V. C., Ohsumi, Y., Nakatogawa, H., Wu, J.-Q., *Noda, N. N. and *Du, L.-L. Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with vacuole membrane protein. eLife<\/strong> 7, e41237 (2018). DOI: 10.7554\/eLife.41237<\/li>\r\n*Yamano, K., Wang, C., Sarraf, S. A., M\u00fcnch, C., Kikuchi, R., Noda, N. N., Hizukuri, Y., Kanemaki, M. T., Harper, W., Tanaka, K., *Matsuda, N. and *Youle, R. J. Endosomal Rab cycles regulate Parkin-mediated mitophagy. eLife<\/strong> 7, e31326 (2018). DOI: 10.7554\/eLife.31326<\/li>\r\nYamaguchi, M., Satoo, K., Suzuki, H., Fujioka, Y., Ohsumi, Y., Inagaki, F. and *Noda, N. N. Atg7 activates an autophagy-essential ubiquitin-like protein Atg8 through multi-step recognition. J. Mol. Biol.<\/strong> 430, 249-257 (2018). DOI: 10.1016\/j.jmb.2017.12.002<\/li>\r\nSuzuki, H. and *Noda, N. N. Biophysical characterization of Atg11, a scaffold protein essential for selective autophagy in yeast. FASEB J.<\/strong> 8, 110\u2013116 (2017). DOI:\u00a0\u00a0\u00a0\u00a0 10.1002\/2211-5463.12355<\/li>\r\nYamamoto, H., Fujioka, Y., Suzuki, S. W., Noshiro, D., Suzuki, H., Kondo-Kakuta, C., Kimura, Y., Hirano, H., Ando, T., *Noda, N. N. and *Ohsumi, Y. The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes. Dev. Cell<\/strong> 38, 86-99 (2016). DOI: 10.1016\/j.devcel.2016.06.015<\/li>\r\nYamasaki, A., Watanabe, Y., Adachi, W., Suzuki, K., Matoba, K., Kirisako, H., Kumeta, H., Nakatogawa, H., Ohsumi, Y., Inagaki, F. and *Noda, N. N. Structural basis for receptor-mediated selective autophagy of aminopeptidase I aggregates. Cell Rep.<\/strong> 16, 19-27 (2016). DOI: 10.1016\/j.celrep.2016.05.066<\/li>\r\nYokogawa, M., Tsushima, T., Noda, N. N., Kumeta, H., Enokizono, Y., Yamashita, K., Standley, D. M., Takeuchi, O., Akira, S. and *Inagaki, F. Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions. Sci. Rep.<\/strong> 6, 22324 (2016). DOI: 10.1038\/srep22324<\/li>\r\nWu, F., Watanabe, Y., Guo, X. Y., Qi, X., Wang, P., Zhao, H. Y., Wang, Z., Fujioka, Y., Zhang, H., Ren, J. Q., Fang, T. C., Shen, Y. X., Feng, W., Hu, J. J., *Noda, N. N. and *Zhang, H. Structural basis of the differential function of the two C. elegans Atg8 homologs, LGG-1 and LGG-2, in autophagy. Mol. Cell<\/strong> 60, 914-929 (2015). DOI: 10.1016\/j.molcel.2015.11.019<\/li>\r\nYamamoto, H., Shima, T., Yamaguchi, M., Mochizuki, Y., Hoshida, H., Kakuta, S., Kondo-Kakuta, C., Noda, N. N., Inagaki, F., Itoh, T., Akada, R. and *Ohsumi, Y. The thermotolerant yeast Kluyveromyces marxianus is a useful organism for structural and biochemical studies of autophagy. J. Biol. Chem.<\/strong> 290, 29506-29518 (2015). DOI: 10.1074\/jbc.M115.684233<\/li>\r\nSuzuki, H., Kaizuka, T., *Mizushima, N. and *Noda, N. N. Structure of the Atg101\u2013Atg13 complex reveals essential roles of Atg101 in autophagy initiation. Nat. Struct. Mol. Biol.<\/strong> 22, 572-580 (2015). DOI: 10.1038\/nsmb.3036<\/li>\r\nFujioka, Y., Suzuki, S. W., Yamamoto, H., Kondo-Kakuta, C., Kimura, Y., Hirano, H., Akada, R., Inagaki, F., *Ohsumi, Y. and *Noda, N. N. Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat. Struct. Mol. Biol.<\/strong> 21, 513-521 (2014). DOI: 10.1038\/nsmb.2822<\/li>\r\n*Suzuki, K., Nakamura, S., Morimoto, M., Fujii, K., Noda, N. N., Inagaki, F. and Ohsumi, Y. Proteomic Profiling of Autophagosome Cargo in Saccharomyces cerevisiae. PLoS One<\/strong> 9, e91651 (2014). DOI: 10.1371\/journal.pone.0091651. eCollection 2014<\/li>\r\nTamura, N., Oku, M., Ito, M., Noda, N. N., Inagaki, F. and *Sakai, Y. Atg18 phosphoregulation controls organellar dynamics by modulating its phosphoinositide-binding activity. J. Cell Biol.<\/strong> 202, 685-98 (2013). DOI: 10.1083\/jcb.20130206<\/li>\r\nTsuganezawa, K., Shinohara, Y., Ogawa, N., Tsuboi, S., Okada, N., Mori, M., Yokoyama, S., Noda, N. N., Inagaki, F., Ohsumi, Y. and *Tanaka, A. Two-colored FCS screening for LC3-p62 interaction inhibitors. J. Biolmol. Screen.<\/strong> 18, 1103-9 (2013). DOI: 10.1177\/1087057113492200<\/li>\r\nSakoh-Nakatogawa, M., Matoba, K., Asai, E., Kirisako, H., Ishii, J., Noda, N. N., Inagaki, F., *Nakatogawa, H. and *Ohsumi, Y. Atg12-Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nat. Struct. Mol. Biol.<\/strong> 20, 433-9 (2013). DOI:10.1038\/nsmb.2527<\/li>\r\n*Noda, N. N., Fujioka, Y., Hanada, T., Ohsumi, Y. and *Inagaki, F. Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep.<\/strong> 14, 206-11 (2013). DOI:10.1038\/embor.2012.208<\/li>\r\nNyirenda J., Matsumoto, S., Saitoh, T., Maita, N., Noda, N. N., Inagaki, F. and *Koda, D. Crystallographic and NMR evidence for flexibility in oligosaccharyltransferases and its catalytic significance. Structure<\/strong> 21, 32-41 (2013). DOI: 10.1016\/j.str.2012.10.011<\/li>\r\nYamaguchi, M., Matoba, K., Sawada, R., Fujioka, Y., Nakatogawa, H., Yamamoto, H., Kobashigawa, Y., Hoshida, H., Akada, R., Ohsumi, Y., *Noda, N. N. and *Inagaki, F. Non-canonical recognition and Ubl-loading of distinct E2s by autophagy-essential Atg7. Nat. Struct. Mol. Biol.<\/strong> 19, 1250-6 (2012). DOI:10.1038\/nsmb.2451<\/li>\r\nWatanabe, Y., Kobayashi, T., Yamamoto, H., Hoshida, H., Akada, R., Inagaki, F., Ohsumi, Y. and *Noda, N. N. Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J. Biol. Chem.<\/strong> 287, 31681-90 (2012). DOI: 10.1074\/jbc.M112.397570<\/li>\r\nHayashi, T., Senda, M., Morohashi, H., Higashi, H., Horio, M., Kashiba, Y., Nagase, L., Sasaya, D., Shimizu, T., Venugopalan, N., Kumeta, H., Noda, N. N., Inagaki, F., *Senda, T. and *Hatakeyama, M. Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. Cell Host & Microbe<\/strong> 12, 20-33 (2012). DOI: 10.1016\/j.chom.2012.05.010<\/li>\r\n*Nakatogawa, H., Ohbayashi, S., Sakoh-Nakatogawa, M., Kakuta, S., Suzuki, S. W., Kirisako, H., Kondo-Kakuta, C., Noda, N. N., Yamamoto, H. and Ohsumi, Y. The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation. J. Biol. Chem.<\/strong> 287, 28503-7 (2012). DOI: 10.1074\/jbc.C112.387514<\/li>\r\nWu, F., Li, Y., Wang, F., Noda, N. N. and *Zhang, H. Differential function of the two Atg4 homologues in the aggrephagy pathway in C. elegans. J. Biol. Chem.<\/strong> 287, 29457-67 (2012). DOI: 10.1074\/jbc.M112.365676<\/li>\r\nYamaguchi, M., *Noda, N. N., Yamamoto, H., Shima, T., Kumeta, H., Kobashigawa, Y., Akada, R., Ohsumi, Y. and *Inagaki, F. Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Structure<\/strong> 20, 1244-54 (2012). DOI:10.1016\/j.str.2012.04.018<\/li>\r\nMatsumoto, S., Igura, M., Nyirenda, J., Matsumoto, M., Yuzawa, S., Noda, N., Inagaki, F. and *Kohda, D. Crystal structure of the C-terminal globular domain of oligosaccharyltransferase from Archaeoglobus fulgidus at 1.75 \u00c5 resolution. Biochemistry<\/strong> 51, 4157-66 (2012). DOI:10.1021\/bi300076u<\/li>\r\n*Noda, N. N., Kobayashi, T., Adachi, W., Fujioka, Y., Ohsumi, Y. and *Inagaki, F. Structure of the novel C-terminal domain of vacuolar protein sorting 30\/autophagy-related protein 6 and its specific role in autophagy. J. Biol. Chem.<\/strong> 287, 16256-66 (2012). DOI: 10.1074\/jbc.M112.348250<\/li>\r\nKondo-Okamoto, N., Noda, N. N., Suzuki, S. W., Nakatogawa, H., Takahashi, I., Matsunami, M., Hashimoto, A., Inagaki, F., Ohsumi, Y. and *Okamoto, K. Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J. Biol. Chem.<\/strong> 287, 10631-8 (2012). DOI: 10.1074\/jbc.M111.299917<\/li>\r\n*Noda, N. N., Satoo, K., Fujioka, Y., Kumeta, H., Ogura, K., Nakatogawa, H., Ohsumi, Y. and *Inagaki, F. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol. Cell<\/strong> 44, 462-75 (2011). DOI:10.1016\/j.molcel.2011.08.035<\/li>\r\nKobashigawa, Y., Tomitaka, A., Kumeta, H., Noda, N. N., Yamaguchi, M. and *Inagaki, F. Autoinhibition and phosphorylation-induced activation mechanisms of human cancer and autoimmune disease-related E3 protein Cbl-b. Proc. Natl. Acad. Sci. U. S. A.<\/strong> 108, 20579-84 (2011). DOI: 10.1073\/pnas.1110712108<\/li>\r\n<\/ul>\r\n\r\n\r\n\r\n\u00a0<\/div>\r\n\r\n\r\n\r\n
\u82f1\u6587\u7dcf\u8aac<\/h5>\r\n\r\n\r\n\r\n\r\n- *Komatsu, M., *Inada, T. and *Noda, N. N.The UFM1 system: Working principles, cellular functions, and pathophysiology. Mol. Cell<\/strong> 84, 156-169 (2024). DOI: 10.1016\/j.molcel.2023.11.034.<\/li>\r\n
- Maruyama, T., Hama, Y. and *Noda, N. N. Mechanisms of mitochondrial reorganization. J.Biochem.<\/strong> 175, 167-178 (2024). DOI: 10.1093\/jb\/mvad098.<\/li>\r\n
- *Noda, N. N. Structural view on autophagosome formation. FEBS Lett.<\/strong> 598, 84-106 (2024). DOI: 10.1002\/1873-3468.14742.<\/li>\r\n
- *Noda, N. N. Structural biology of the Atg8 and Atg12 conjugation systems. Autophagy Rep.<\/strong> 2, 2277582 (2023).<\/li>\r\n
- *Fukuda, T., Furukawa, K., Maruyama, T., Noda, N. N. and *Kanki, T. Mitofissin: a novel mitochondrial fission protein that facilitates mitophagy.Autophagy<\/strong> 19, 3019-3021 (2023). DOI: 10.1080\/15548627.2023.2237343.<\/li>\r\n
- Hama, Y., Ogasawara, Y., and *Noda, N. N. Autophagy and cancer: basic mechanisms and inhibitor development. Cancer Sci.<\/strong>\u00a0114, 2699-2708 (2023). DOI: 10.1111\/cas.15803<\/li>\r\n
- \r\n
Osawa, T., Matoba, K. and *Noda, N. N. Lipid transport from endoplasmic reticulum to autophagic membranes. Cold Spring Harb. Perspect. Biol.<\/strong>\u00a0 14, a041254 (2022). DOI:10.1101\/cshperspect.a041254<\/p>\r\n<\/li>\r\n- *Noda, N. N. Cytoskeleton grows p62 condensates for autophagy. Cell Res.<\/strong> 32, 607-608 (2022). DOI: 10.1038\/s41422-022-00671-5<\/li>\r\n
- Valentine, W. J., Yanagida, K., Kawana, H., Kono, N., Noda, N. N., Aoki, J. and Shindou, H. Update and nomenclature proposal for mammalian lysophospholipid acyltransferases which create membrane phospholipid diversity. J. Biol. Chem.<\/strong> 298, 101470 (2021). DOI: 10.1016\/j.jbc.2021.101470<\/li>\r\n
- Maruyama, T. and *Noda, N. N. Delineating the lipidated Atg8 structure for unveiling its hidden activity in autophagy. Autophagy<\/strong> 12, 1-2 (2021). DOI: 10.1080\/15548627.2021.1961075.<\/li>\r\n
- *Noda, N. N. Atg2 and Atg9: Intermembrane and interleaflet lipid transporters driving autophagy. Biochim. Biophys. Acta Mol. Cell Biol. Lipids<\/strong> 1866, 158956 (2021). DOI: 10.1016\/j.bbalip.2021.158956.<\/li>\r\n
- Matoba, K. and *Noda, N. N. Structural catalog of core Atg proteins opens new era of autophagy research. J. Biochem.<\/strong> 169, 517-525 (2021). DOI: 10.1093\/jb\/mvab017.<\/li>\r\n
- Fujioka, Y. and *Noda, N. N. Biomolecular condensates in autophagy regulation. Curr. Opin. Cell Biol.<\/strong> 69, 23-29 (2021). DOI: 10.1016\/j.ceb.2020.12.011.<\/li>\r\n
- Matoba, K. and *Noda, N. N. Secret of Atg9: lipid scramblase activity drives de novo autophagosome biogenesis. Cell Death Diff.<\/strong> 27, 3386-3388 (2020). DOI: 10.1038\/s41418-020-00663-1.<\/li>\r\n
- Alam, J. M. and *Noda, N. N. In vitro reconstitution of autophagic processes. Biochem. Soci Trans.<\/strong> 48, 2003-2014 (2020). DOI: 10.1042\/BST20200130.<\/li>\r\n
- *Noda, N. N., Wang, Z. and *Zhang, H. Liquid-liquid phase separation in autophagy. J. Cell Biol.<\/strong> 219, e202004062 (2020). DOI: 10.1083\/jcb.202004062.<\/li>\r\n
- Osawa, T. and *Noda, N. N. Atg2: a novel phospholipid transfer protein that mediates de novo autophagosome biogenesis. Protein Sci.<\/strong> 28, 1005-1012 (2019). DOI: 10.1002\/pro.3623.<\/li>\r\n
- Yamasaki, A., Watanabe, Y. and *Noda, N. N. Structural studies of selective autophagy in yeast. Methods Mol. Biol.<\/strong> 1880, 77-90 (2019). DOI: 10.1007\/978-1-4939-8873-0_4.<\/li>\r\n
- Osawa, T., Alam, J. M. and *Noda, N. N. Membrane-binding domains in autophagy. Chem. Phys. Lipids<\/strong> 218, 1-9 (2019). DOI: 10.1016\/j.chemphyslip.2018.11.001.<\/li>\r\n
- Maruyama, T. and *Noda, N. N. Autophagy-essential protease Atg4: Structure, function, regulation and inhibition. J. Antibiot.<\/strong> 71, 72\u201378 (2018). DOI: 10.1038\/ja.2017.104.<\/li>\r\n
- Yamasaki, A. and *Noda, N. N. Structural biology of the Cvt pathway. J. Mol. Biol.<\/strong> 429, 531-542 (2017). DOI: 10.1016\/j.jmb.2017.01.003.<\/li>\r\n
- Suzuki, H., Osawa, T., Fujioka, Y. and *Noda, N. N. Structural biology of the core autophagy machinery. Curr. Opin. Struct. Biol.<\/strong> 43, 10-17 (2017). DOI: 10.1016\/j.sbi.2016.09.010<\/li>\r\n
- Wu, F., Wang, P., Shen, Y., Noda, N. N. and *Zhang, H. Small differences make a big impact: Structural insights into the differential function of the 2 Atg8 homologs in C. elegans. Autophagy<\/strong> 12, 606-607 (2016). DOI: 10.1080\/15548627.2015.1137413<\/li>\r\n
- *Noda, N. N. and *Mizushima, N. Atg101: not just an accessory subunit in the autophagy-initiation complex. Cell Struct. Funct.<\/strong> 41, 13-20 (2016). DOI: 10.1247\/csf.15013<\/li>\r\n
- Suzuki, H., Kaizuka, T., Mizushima, N. and *Noda, N. N. Open and closed HORMAs regulate autophagy initiation. Autophagy<\/strong> 11, 2123-2124 (2015). DOI: 10.1080\/15548627.2015.1091144<\/li>\r\n
- *Noda, N. N. and Fujioka, Y. Atg1 family kinases in autophagy initiation. Cell. Mol. Life Sci.<\/strong> 72, 3083-96 (2015). DOI: 10.1007\/s00018-015-1917-z<\/li>\r\n
- *Noda, N. N. and *Inagaki, F. Mechanisms of autophagy. Annu. Rev. Biophys.<\/strong> 44, 101-122 (2015). DOI: 10.1146\/annurev-biophys-060414-034248<\/li>\r\n<\/ul>\r\n\r\n\r\n\r\n
\u00a0<\/div>\r\n\r\n\r\n\r\n
\u548c\u6587\u7dcf\u8aac<\/h5>\r\n\r\n\r\n\r\n