Publications

Original articles
  • Alam, J. M., Maruyama, T., Noshiro, D., Kakuta, C., Kotani, T., Nakatogawa, H. and *Noda, N. N. Complete set of the Atg8-E1-E2-E3 conjugation machinery forms an interaction web that mediates membrane shaping. Nat. Struct. Mol. Biol. 31, 170-178 (2024). DOI: 10.1038/s41594-023-01132-2
  • Noshiro, D. and *Noda, N. N. Immobilization of lipid nanorods onto two-dimensional crystals of protein tamavidin 2 for high-speed atomic force microscopy. STAR Protocols 4, 102633 (2023). DOI: 10.1016/j.xpro.2023.102633
  • Maruyama, T. and *Noda, N. N. Protocol for real-time imaging of membrane fission by mitofissin. STAR Protocols 4, 102590 (2023). DOI: 10.1016/j.xpro.2023.102590.

  • Ishimura, R., Ito, S., Mao, G., Komatsu-Hirota, S., *Inada, T., *Noda, N. N. and *Komatsu, M. Mechanistic insights into the UFM1 E3 ligase complex in ufmylation and ribosome-associated protein quality control. Sci. Adv. 9, eadh3635 (2023). DOI: 10.1126/sciadv.adh3635

  • Hitomi, K., Kotani, T., Noda, N. N., Kimura, Y. and *Nakatogawa, H. The Atg1 complex, Atg9, and Vac8 recruit PI3K complex I to the pre-autophagosomal structure. J. Cell Biol. 222, e202210017 (2023). DOI: 10.1083/jcb.202210017
  • Ikeda, R., Noshiro, D., Morishita, H., Takada, S., Kageyama, S., Fujioka, Y., Funakoshi, T., Komatsu-Hirota, S., Arai, R., Ryzhii, E., Abe, M., Koga, T., Motohashi, H., Nakao, M., Sakimura, K., Horii, A., Waguri, S., *Ichimura, Y., *Noda, N. N. and *Komatsu, M. Phosphorylation of phase-separated p62 bodies by ULK1 activates a redox-independent stress response. EMBO J. 42, e113349 (2023). DOI: 10.15252/embj.2022113349

  • Fukuda, T., Furukawa, K., Maruyama, T., Yamashita, S., Noshiro, D., Song, C., Ogasawara, Y., Okuyama, K., Alam, J. M., Hayatsu, M., Saigusa, T., Inoue, K., Ikeda, K., Takai, A., Chen, L., Lahiri, V., Okada, Y., Shibata, S., Murata, K., Klionsky, D. J., *Noda, N. N., and *Kanki, T. The mitochondrial intermembrane space protein mitofissin drives mitochondrial fission required for mitophagy. Mol. Cell 83, 2045–2058 (2023). DOI: 10.1016/j.molcel.2023.04.022

  • Kurusu, R., Fujimoto, Y., *Morishita, H., Noshiro, D., Takada, S., Yamano, K., Tanaka, H., Arai, R., Kageyama, S., Funakoshi, T., Komatsu-Hitrota, S., Taka, H., Kazuno, S., Miura, Y., Koike, M., Wakai, T., Waguri, S., Noda, N. N., and *Komatsu, M. Integrated proteomics identifies p62-dependent selective autophagy of the supramolecular vault complex. Dev. Cell 58, 1189-1205 (2023). DOI: 10.1016/j.devcel.2023.04.015

  • Ishimura, R., El-Gowily, A. H., Noshiro, D., Komatsu-Hirota, S., Ono, Y., Shindo, M., Hatta, T., Abe, M., Uemura, T., Lee-Okada, H.-C., Mohamed, T. M., Yokomizo, T., Ueno, T., Sakimura, K., Natsume, T., Sorimachi, H., Inada, T., Waguri, S., Noda, N. N. and *Komatsu, M. The UFM1 system regulates ER-phagy through the ufmylation of CYB5R3. Nat. Commun. 13, 7857 (2022).DOI: 10.1038/s41467-022-35501-0

  • Park, S. W., Jeon, P., Yamasaki, A., Lee, H. E., Choi, H., Mun, J. Y., Jun, Y. W., Park, J. H., Lee, S. H., Lee, S. K., Lee, Y. K., Song, H. K., Lazarou, M., Cho, D. H., Komatsu, M., *Noda, N. N., *Jang, D. J. and *Lee, J. A. Development of new tools to study membrane-anchored mammalian Atg8 proteins. Autophagy 19, 1424-1443 (2023). DOI: 10.1080/15548627.2022.2132040

  • Cui, J., Ogasawara, Y., Kurata, I, Matoba, K., Fujioka, Y., *Noda, N. N., Shibasaki, M. and *Watanabe, M. Targeting the ATG5-ATG16L1 protein-protein interaction with a hydrocarbon-stapled peptide derived from ATG16L1 for autophagy inhibition. J. Am. Chem. Soci. 144, 17671-17679 (2022).

  • Kubota, Y., Fujioka, Y., Patil, A., Takagi, Y., Matsubara, D., Iijima, M., Momose, I., Naka, R., Nakai, K., Noda, N. N. and *Takekawa, M. Qualitative differences in disease-associated MEK mutants reveal molecular signatures and aberrant signaling-crosstalk in cancer. Nat. Commun. 13, 4063 (2022). DOI: 10.1038/s41467-022-31690-w
  • Chino, H., Yamasaki, A., Ode, K. L., Ueda, H. R., *Noda, N. N. and *Mizushima, N. Phosphorylation by casein kinase 2 enhances the interaction between ER-phagy receptor TEX264 and ATG8 proteins. EMBO Rep.23, e54801 (2022). DOI: 10.15252/embr.202254801.
  • Faruk, M. O., Ichimura, Y., Kageyama, S., Komatsu-Hirota, S., El-Gowily, A. H., Sou, Y. S., Koike, M., Noda, N. N. and *Komatsu, M. Phase-separated protein droplets of amyotrophic lateral sclerosis-associated p62/SQSTM1 mutants show reduced inner fluidity. J. Biol. Chem. 297, 101405 (2021). DOI: 10.1016/j.jbc.2021.101405
  • Tanigawa, M., Yamamoto, K., Nagatoishi, S., Nagata, K., Noshiro, D., Noda, N. N., Tsumoto, K. and *Maeda, T. A glutamine sensor that directly activates TORC1. Commun. Biol. 4, 1093 (2021). DOI: 10.1038/s42003-021-02625-w
  • Maruyama, T., Alam, J. M., Fukuda, T., Kageyama, S., Kirisako, H., Ishii, Y., Shimada, I., Ohsumi, Y., Komatsu, M., Kanki, T., Nakatogawa, H. and *Noda, N. N. Membrane perturbation by lipidated Atg8 underlies autophagosome biogenesis. Nat. Struct. Mol. Biol. 28, 583-593 (2021). DOI: 10.1038/s41594-021-00614-5
  • Matoba, K. and *Noda, N. N. Atg12-Interacting Motif Is Crucial for E2-E3 Interaction in Plant Atg8 System. Biol. Pharm. Bull. 44(9):1337-1343 (2021). DOI: 10.1248/bpb.b21-00439
  • Hamano, F., Matoba, K., Hashidate-Yoshida, T., Suzuki, T., Miura, K., Hishikawa, D., Harayama, T., Yuki, K., Kita, Y., Noda, N. N., Shimizu, T. and *Shindou, H. Mutagenesis and homology modeling reveal a predicted pocket of lysophosphatidylcholine acyltransferase 2 to catch Acyl-CoA. FASEB J. 35, e21501 (2021). DOI: 10.1096/fj.202002591R
  • Kageyama, S., Gudmundsson, S., Sou, Y.-S., Ichimura, Y., Tamura, N., Kazuno, S., Ueno, T., Miura, Y., Noshiro, D., Abe, M., Mizushima, T., Miura, N., Okuda, S., Motohashi, H., Lee, J.-A., Sakimura, K., Ohe, T., Noda, N. N., Waguri, S., *Eskelinen, E.-L. and *Komatsu, M. p62/SQSTM1-droplet serves as a platform for autophagosome formation and anti-oxidative stress response. Nat. Commun. 12, 16 (2021). DOI: 10.1038/s41467-020-20185-1
  • Kodera, N., Noshiro, D., Dora, S. K., Mori, T., Habchi, J., Blocquel, D., Gruet, A., Dosnon, M., Salladini, E., Bignon, C., Fujioka, Y., Oda, T., Noda, N. N., Sato, M., Lotti, M., Mizuguchi, M., *Longhi, S. and *Ando, T. Structural and dynamics analysis of intrinsically disordered proteins by high speed atomic force microscopy. Nat. Nanotech. 16, 181-189 (2021). DOI: 10.1038/s41565-020-00798-9
  • Matoba, K., Kotani, T., Tsutsumi, A., Tsuji, T., Mori, T., Noshiro, D., Sugita, Y., Nomura, N., Iwata, S., Ohsumi, Y., Fujimoto, T., Nakatogawa, H., Kikkawa, M. and *Noda, N. N.. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol. 27, 1185-1193 (2020). DOI: 10.1038/s41594-020-00518-w
  • Mochida, K., Yamasaki, A., Matoba, K., Kirisako, H., *Noda, N. N. and *Nakatogawa, H. Super-assembly of ER-phagy receptor Atg40 induces local ER remodeling at contacts with forming autophagosomal membranes. Nat. Commun. 11, 3306 (2020). DOI: 10.1038/s41467-020-17163-y
  • Yamasaki, A., Alam, J. M., Noshiro, D., Hirata, E., Fujioka, Y., Suzuki, K., Ohsumi, Y. and *Noda, N. N. Liquidity is a critical determinant for selective autophagy of protein condensates. Mol. Cell 77, 1163-1175 (2020). DOI: 10.1016/j.molcel.2019.12.026
  • Fujioka, Y., Alam, J. M., Noshiro, D., Mouri, K., Ando, T., Okada, Y., May, A. I., Knorr, R. L., Suzuki, K., Ohsumi, Y. and *Noda, N. N. Phase separation organizes the site of autophagosome formation. Nature 578, 301-305 (2020). DOI: 10.1038/s41586-020-1977-6
  • Osawa, T., Ishii, Y. and *Noda, N. N. Human ATG2B possesses a lipid transfer activity which is accelerated by negatively charged lipids and WIPI4. Genes Cells 25, 65-70 (2020). DOI: 10.1111/gtc.12733
  • Pang, Y., Yamamoto, H., Sakamoto, H., Oku, M., Mutungi, J. K., Sahani, M. H., Kurikawa, Y., Kita, K., Noda, N. N., Sakai, Y., *Jia, H. and *Mizushima, N. Evolution from covalent conjugation to non-covalent interaction in a ubiquitin-like system. Nat. Struct. Mol. Biol. 26, 289-296 (2019). DOI: 10.1038/s41594-019-0204-3
  • Osawa, T., Kotani, T., Kawaoka, T., Hirata, E., Suzuki, K., Nakatogawa, H., Ohsumi, Y. and *Noda, N. N. Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nat. Struct. Mol. Biol. 26, 281-288 (2019). DOI: 10.1038/s41594-019-0203-4
  • Noda, H., Asada, Y., Maruyama, T., Takizawa, N., Noda, N. N., *Shibasaki, M. and *Kumagai, N. A C4N4 Diaminopyrimidine Fluorophore. Chemistry 25, 4299-4304 (2019). DOI: 10.1002/chem.201900467
  • Liu, X.-M., Yamasaki, A., Du, X.-M., Coffman, V. C., Ohsumi, Y., Nakatogawa, H., Wu, J.-Q., *Noda, N. N. and *Du, L.-L. Lipidation-independent vacuolar functions of Atg8 rely on its noncanonical interaction with vacuole membrane protein. eLife 7, e41237 (2018). DOI: 10.7554/eLife.41237
  • *Yamano, K., Wang, C., Sarraf, S. A., Münch, C., Kikuchi, R., Noda, N. N., Hizukuri, Y., Kanemaki, M. T., Harper, W., Tanaka, K., *Matsuda, N. and *Youle, R. J. Endosomal Rab cycles regulate Parkin-mediated mitophagy. eLife 7, e31326 (2018). DOI: 10.7554/eLife.31326
  • Yamaguchi, M., Satoo, K., Suzuki, H., Fujioka, Y., Ohsumi, Y., Inagaki, F. and *Noda, N. N. Atg7 activates an autophagy-essential ubiquitin-like protein Atg8 through multi-step recognition. J. Mol. Biol. 430, 249-257 (2018). DOI: 10.1016/j.jmb.2017.12.002
  • Suzuki, H. and *Noda, N. N. Biophysical characterization of Atg11, a scaffold protein essential for selective autophagy in yeast. FASEB J. 8, 110–116 (2017). DOI:     10.1002/2211-5463.12355
  • Yamamoto, H., Fujioka, Y., Suzuki, S. W., Noshiro, D., Suzuki, H., Kondo-Kakuta, C., Kimura, Y., Hirano, H., Ando, T., *Noda, N. N. and *Ohsumi, Y. The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes. Dev. Cell 38, 86-99 (2016). DOI: 10.1016/j.devcel.2016.06.015
  • Yamasaki, A., Watanabe, Y., Adachi, W., Suzuki, K., Matoba, K., Kirisako, H., Kumeta, H., Nakatogawa, H., Ohsumi, Y., Inagaki, F. and *Noda, N. N. Structural basis for receptor-mediated selective autophagy of aminopeptidase I aggregates. Cell Rep. 16, 19-27 (2016). DOI: 10.1016/j.celrep.2016.05.066
  • Yokogawa, M., Tsushima, T., Noda, N. N., Kumeta, H., Enokizono, Y., Yamashita, K., Standley, D. M., Takeuchi, O., Akira, S. and *Inagaki, F. Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions. Sci. Rep. 6, 22324 (2016). DOI: 10.1038/srep22324
  • Wu, F., Watanabe, Y., Guo, X. Y., Qi, X., Wang, P., Zhao, H. Y., Wang, Z., Fujioka, Y., Zhang, H., Ren, J. Q., Fang, T. C., Shen, Y. X., Feng, W., Hu, J. J., *Noda, N. N. and *Zhang, H. Structural basis of the differential function of the two C. elegans Atg8 homologs, LGG-1 and LGG-2, in autophagy. Mol. Cell 60, 914-929 (2015). DOI: 10.1016/j.molcel.2015.11.019
  • Yamamoto, H., Shima, T., Yamaguchi, M., Mochizuki, Y., Hoshida, H., Kakuta, S., Kondo-Kakuta, C., Noda, N. N., Inagaki, F., Itoh, T., Akada, R. and *Ohsumi, Y. The thermotolerant yeast Kluyveromyces marxianus is a useful organism for structural and biochemical studies of autophagy. J. Biol. Chem. 290, 29506-29518 (2015). DOI: 10.1074/jbc.M115.684233
  • Suzuki, H., Kaizuka, T., *Mizushima, N. and *Noda, N. N. Structure of the Atg101–Atg13 complex reveals essential roles of Atg101 in autophagy initiation. Nat. Struct. Mol. Biol. 22, 572-580 (2015). DOI: 10.1038/nsmb.3036
  • Fujioka, Y., Suzuki, S. W., Yamamoto, H., Kondo-Kakuta, C., Kimura, Y., Hirano, H., Akada, R., Inagaki, F., *Ohsumi, Y. and *Noda, N. N. Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat. Struct. Mol. Biol. 21, 513-521 (2014). DOI: 10.1038/nsmb.2822
  • *Suzuki, K., Nakamura, S., Morimoto, M., Fujii, K., Noda, N. N., Inagaki, F. and Ohsumi, Y. Proteomic Profiling of Autophagosome Cargo in Saccharomyces cerevisiae. PLoS One 9, e91651 (2014). DOI: 10.1371/journal.pone.0091651. eCollection 2014
  • Tamura, N., Oku, M., Ito, M., Noda, N. N., Inagaki, F. and *Sakai, Y. Atg18 phosphoregulation controls organellar dynamics by modulating its phosphoinositide-binding activity. J. Cell Biol. 202, 685-98 (2013). DOI: 10.1083/jcb.20130206
  • Tsuganezawa, K., Shinohara, Y., Ogawa, N., Tsuboi, S., Okada, N., Mori, M., Yokoyama, S., Noda, N. N., Inagaki, F., Ohsumi, Y. and *Tanaka, A. Two-colored FCS screening for LC3-p62 interaction inhibitors. J. Biolmol. Screen. 18, 1103-9 (2013). DOI: 10.1177/1087057113492200
  • Sakoh-Nakatogawa, M., Matoba, K., Asai, E., Kirisako, H., Ishii, J., Noda, N. N., Inagaki, F., *Nakatogawa, H. and *Ohsumi, Y. Atg12-Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nat. Struct. Mol. Biol. 20, 433-9 (2013). DOI:10.1038/nsmb.2527
  • *Noda, N. N., Fujioka, Y., Hanada, T., Ohsumi, Y. and *Inagaki, F. Structure of the Atg12-Atg5 conjugate reveals a platform for stimulating Atg8-PE conjugation. EMBO Rep. 14, 206-11 (2013). DOI:10.1038/embor.2012.208
  • Nyirenda J., Matsumoto, S., Saitoh, T., Maita, N., Noda, N. N., Inagaki, F. and *Koda, D. Crystallographic and NMR evidence for flexibility in oligosaccharyltransferases and its catalytic significance. Structure 21, 32-41 (2013). DOI: 10.1016/j.str.2012.10.011
  • Yamaguchi, M., Matoba, K., Sawada, R., Fujioka, Y., Nakatogawa, H., Yamamoto, H., Kobashigawa, Y., Hoshida, H., Akada, R., Ohsumi, Y., *Noda, N. N. and *Inagaki, F. Non-canonical recognition and Ubl-loading of distinct E2s by autophagy-essential Atg7. Nat. Struct. Mol. Biol. 19, 1250-6 (2012). DOI:10.1038/nsmb.2451
  • Watanabe, Y., Kobayashi, T., Yamamoto, H., Hoshida, H., Akada, R., Inagaki, F., Ohsumi, Y. and *Noda, N. N. Structure-based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J. Biol. Chem. 287, 31681-90 (2012). DOI: 10.1074/jbc.M112.397570
  • Hayashi, T., Senda, M., Morohashi, H., Higashi, H., Horio, M., Kashiba, Y., Nagase, L., Sasaya, D., Shimizu, T., Venugopalan, N., Kumeta, H., Noda, N. N., Inagaki, F., *Senda, T. and *Hatakeyama, M. Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. Cell Host & Microbe 12, 20-33 (2012). DOI: 10.1016/j.chom.2012.05.010
  • *Nakatogawa, H., Ohbayashi, S., Sakoh-Nakatogawa, M., Kakuta, S., Suzuki, S. W., Kirisako, H., Kondo-Kakuta, C., Noda, N. N., Yamamoto, H. and Ohsumi, Y. The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation. J. Biol. Chem. 287, 28503-7 (2012). DOI: 10.1074/jbc.C112.387514
  • Wu, F., Li, Y., Wang, F., Noda, N. N. and *Zhang, H. Differential function of the two Atg4 homologues in the aggrephagy pathway in C. elegans. J. Biol. Chem. 287, 29457-67 (2012). DOI: 10.1074/jbc.M112.365676
  • Yamaguchi, M., *Noda, N. N., Yamamoto, H., Shima, T., Kumeta, H., Kobashigawa, Y., Akada, R., Ohsumi, Y. and *Inagaki, F. Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Structure 20, 1244-54 (2012). DOI:10.1016/j.str.2012.04.018
  • Matsumoto, S., Igura, M., Nyirenda, J., Matsumoto, M., Yuzawa, S., Noda, N., Inagaki, F. and *Kohda, D. Crystal structure of the C-terminal globular domain of oligosaccharyltransferase from Archaeoglobus fulgidus at 1.75 Å resolution. Biochemistry 51, 4157-66 (2012). DOI:10.1021/bi300076u
  • *Noda, N. N., Kobayashi, T., Adachi, W., Fujioka, Y., Ohsumi, Y. and *Inagaki, F. Structure of the novel C-terminal domain of vacuolar protein sorting 30/autophagy-related protein 6 and its specific role in autophagy. J. Biol. Chem. 287, 16256-66 (2012). DOI: 10.1074/jbc.M112.348250
  • Kondo-Okamoto, N., Noda, N. N., Suzuki, S. W., Nakatogawa, H., Takahashi, I., Matsunami, M., Hashimoto, A., Inagaki, F., Ohsumi, Y. and *Okamoto, K. Autophagy-related protein 32 acts as autophagic degron and directly initiates mitophagy. J. Biol. Chem. 287, 10631-8 (2012). DOI: 10.1074/jbc.M111.299917
  • *Noda, N. N., Satoo, K., Fujioka, Y., Kumeta, H., Ogura, K., Nakatogawa, H., Ohsumi, Y. and *Inagaki, F. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol. Cell 44, 462-75 (2011). DOI:10.1016/j.molcel.2011.08.035
  • Kobashigawa, Y., Tomitaka, A., Kumeta, H., Noda, N. N., Yamaguchi, M. and *Inagaki, F. Autoinhibition and phosphorylation-induced activation mechanisms of human cancer and autoimmune disease-related E3 protein Cbl-b. Proc. Natl. Acad. Sci. U. S. A. 108, 20579-84 (2011). DOI: 10.1073/pnas.1110712108
Reviews
  • *Komatsu, M., *Inada, T. and *Noda, N. N. The UFM1 system: Working principles, cellular functions, and pathophysiology. Mol.Cell 84, 156-169 (2024). DOI: 10.1016/j.molcel.2023.11.034.
  • Maruyama, T., Hama, Y. and *Noda, N. N. Mechanisms of mitochondrial reorganization. J.Biochem. 175, 167-178 (2024). DOI: 10.1093/jb/mvad098.
  • *Noda, N. N. Structural view on autophagosome formation. FEBS Lett. 598, 84-106 (2024). DOI: 10.1002/1873-3468.14742.
  • *Noda, N. N. Structural biology of the Atg8 and Atg12 conjugation systems. Autophagy Rep. 2, 2277582 (2023).
  • *Fukuda, T., Furukawa, K., Maruyama, T., Noda, N. N. and *Kanki, T. Mitofissin: a novel mitochondrial fission protein that facilitates mitophagy.Autophagy 19, 3019-3021 (2023). DOI: 10.1080/15548627.2023.2237343.
  • Hama, Y., Ogasawara, Y., and *Noda, N. N. Autophagy and cancer: basic mechanisms and inhibitor development. Cancer Sci. 114, 2699-2708 (2023). DOI: 10.1111/cas.15803
  • Osawa, T., Matoba, K. and *Noda, N. N. Lipid transport from endoplasmic reticulum to autophagic membranes. Cold Spring Harb. Perspect. Biol. 14, a041254 (2022).DOI: 10.1101/cshperspect.a041254
  • *Noda, N. N. Cytoskeleton grows p62 condensates for autophagy. Cell Res. 32, 607-608 (2022). DOI: 10.1038/s41422-022-00671-5
  • Valentine, W. J., Yanagida, K., Kawana, H., Kono, N., Noda, N. N., Aoki, J. and Shindou, H. Update and nomenclature proposal for mammalian lysophospholipid acyltransferases which create membrane phospholipid diversity. J. Biol. Chem. 298, 101470 (2021). DOI: 10.1016/j.jbc.2021.101470
  • Maruyama, T. and *Noda, N. N. Delineating the lipidated Atg8 structure for unveiling its hidden activity in autophagy. Autophagy 12, 1-2 (2021). DOI: 10.1080/15548627.2021.1961075.
  • *Noda, N. N. Atg2 and Atg9: Intermembrane and interleaflet lipid transporters driving autophagy. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1866, 158956 (2021). DOI: 10.1016/j.bbalip.2021.158956.
  • Matoba, K. and *Noda, N. N. Structural catalog of core Atg proteins opens new era of autophagy research. J. Biochem. 169, 517-525 (2021). DOI: 10.1093/jb/mvab017.
  • Fujioka, Y. and *Noda, N. N. Biomolecular condensates in autophagy regulation. Curr. Opin. Cell Biol. 69, 23-29 (2021). DOI: 10.1016/j.ceb.2020.12.011.
  • Matoba, K. and *Noda, N. N. Secret of Atg9: lipid scramblase activity drives de novo autophagosome biogenesis. Cell Death Diff. 27, 3386-3388 (2020). DOI: 10.1038/s41418-020-00663-1.
  • Alam, J. M. and *Noda, N. N. In vitro reconstitution of autophagic processes. Biochem. Soci Trans. 48, 2003-2014 (2020). DOI: 10.1042/BST20200130.
  • *Noda, N. N., Wang, Z. and *Zhang, H. Liquid-liquid phase separation in autophagy. J. Cell Biol. 219, e202004062 (2020). DOI: 10.1083/jcb.202004062.
  • Osawa, T. and *Noda, N. N. Atg2: a novel phospholipid transfer protein that mediates de novo autophagosome biogenesis. Protein Sci. 28, 1005-1012 (2019). DOI: 10.1002/pro.3623.
  • Yamasaki, A., Watanabe, Y. and *Noda, N. N. Structural studies of selective autophagy in yeast. Methods Mol. Biol. 1880, 77-90 (2019). DOI: 10.1007/978-1-4939-8873-0_4.
  • Osawa, T., Alam, J. M. and *Noda, N. N. Membrane-binding domains in autophagy. Chem. Phys. Lipids 218, 1-9 (2019). DOI: 10.1016/j.chemphyslip.2018.11.001.
  • Maruyama, T. and *Noda, N. N. Autophagy-essential protease Atg4: Structure, function, regulation and inhibition. J. Antibiot. 71, 72–78 (2018). DOI: 10.1038/ja.2017.104.
  • Yamasaki, A. and *Noda, N. N. Structural biology of the Cvt pathway. J. Mol. Biol. 429, 531-542 (2017). DOI: 10.1016/j.jmb.2017.01.003.
  • Suzuki, H., Osawa, T., Fujioka, Y. and *Noda, N. N. Structural biology of the core autophagy machinery. Curr. Opin. Struct. Biol. 43, 10-17 (2017). DOI: 10.1016/j.sbi.2016.09.010
  • Wu, F., Wang, P., Shen, Y., Noda, N. N. and *Zhang, H. Small differences make a big impact: Structural insights into the differential function of the 2 Atg8 homologs in C. elegans. Autophagy 12, 606-607 (2016). DOI: 10.1080/15548627.2015.1137413
  • *Noda, N. N. and *Mizushima, N. Atg101: not just an accessory subunit in the autophagy-initiation complex. Cell Struct. Funct. 41, 13-20 (2016). DOI: 10.1247/csf.15013
  • Suzuki, H., Kaizuka, T., Mizushima, N. and *Noda, N. N. Open and closed HORMAs regulate autophagy initiation. Autophagy 11, 2123-2124 (2015). DOI: 10.1080/15548627.2015.1091144
  • *Noda, N. N. and Fujioka, Y. Atg1 family kinases in autophagy initiation. Cell. Mol. Life Sci. 72, 3083-96 (2015). DOI: 10.1007/s00018-015-1917-z
  • *Noda, N. N. and *Inagaki, F. Mechanisms of autophagy. Annu. Rev. Biophys. 44, 101-122 (2015). DOI: 10.1146/annurev-biophys-060414-034248
Japanese reviews
  • 野田展生「タンパク質の液-液相分離―オートファジーを例に」実験医学増刊 40, No.12, 237-243 (2022).
  • 藤岡優子「精製Atgタンパク質を用いたin vitro液滴形成と蛍光観察」実験医学別冊「フロントランナー直伝 相分離解析プロトコール」加藤昌人,白木賢太郎,中川真一編,40-49 (2022).
  • 野田展生「蛋白質の液-液相分離」細胞,53,529-532 (2021).
  • 能代大輔,野田展生「液-液相分離と選択的オートファジー」実験医学,39,2046-2051 (2021).
  • 藤岡優子,野田展生「相分離で見直すオートファジー」実験医学, 39, 10, 172-177 (2021).
  • 藤岡優子「オートファジーと液-液相分離」医学のあゆみ 272, 9, 763-768 (2020).
  • 藤岡優子,*野田展生「天然変性タンパク質によるオートファジー始動液滴の形成」生物物理, 60, 171-173 (2020).
  • 藤岡優子,野田展生「液-液相分離によるオートファゴソームの形成部位の構築」実験医学, 38, 1354-1357 (2020).
  • 能代大輔,野田展生「柔らかい構造の可視化①LLPSと膜動態を例に」実験医学,38,84-89 (2020).
  • *野田展生「選択的オートファジーの構造生物学的基盤」医学のあゆみ, 272, 769-775 (2020).
  • *野田展生「オートファジーの構造生物学第二章」生化学, 91, 611-619 (2019).
  • *野田展生「オートファゴソームをつくるための脂質を供給する仕組み」FRAGRANCE JOURNAL, 47, No. 8, 26-29 (2019).
  • *野田展生「オートファゴソーム形成の分子機構」医学のあゆみ,267,1014-1018 (2018).
  • *野田展生「タンパク質を分解して再利用するオートファジーの仕組み」日本の科学者, 53, 427-433 (2018).
  • *野田展生「オートファジーを制御するタンパク質群の構造と機能」バイオサイエンスとインダストリー, 76, 12-19 (2018).
  • *野田展生「オートファジーで運ばれるタンパク質の構造」バイオサイエンスとインダストリー, 76, 10-11 (2018).
  • *野田展生「オートファジーの始動機構を観る」医学のあゆみ, 262, 373-378 (2017).
  • 渡邊康紀,*野田展生「選択的なオートファジーに機能する線虫におけるAtg8のホモログLGG-1とLGG-2の構造および機能の違い」ライフサイエンス新着論文レビュー (http://first.lifesciencedb.jp/archives/12065)2016年1月12日
  • *鈴木浩典,*野田展生「高等生物のオートファジー始動に必須な因子Atg101の構造と機能」日本結晶学会誌, 57, 324-330 (2015). DOI: 10.5940/jcrsj.57.324
  • 藤岡優子,*野田展生「オートファジーの始動を制御する複合体の立体構造」日本結晶学会誌, 57, 191-197 (2015). DOI: 10.5940/jcrsj.57.191
  • 鈴木浩典,*野田展生「オートファジー始動複合体における高等生物に固有なタンパク質Atg101の構造と機能」ライフサイエンス新着論文レビュー(http://first.lifesciencedb.jp/archives/10350)2015年6月23日
  • *野田展生,*稲垣冬彦「オートファゴソームの形成にかかわるタンパク質の構造と分子機能」領域融合レビュー,3, e012 (2014)
  • *野田展生,稲垣冬彦「オートファジーの作動機構」実験医学,32, 1612-1616 (2014)
  • 藤岡優子,*野田展生「オートファジー始動複合体の形成の構造基盤」ライフサイエンス新着論文レビュー(http://first.lifesciencedb.jp/archives/8761)2014年5月26日 DOI: 10.7875/first.author.2014.067
  • *野田展生「オートファジーの構造生物学」生化学,85,762-774 (2013).
  • *野田展生「オートファジーの構造生物学 主要Atg因子の構造の最新像と未解決課題」実験医学,31,1355-1361 (2013).
  • 山口雅也,野田展生,*稲垣冬彦「ユビキチン様タンパク質活性化酵素Atg7は2つのユビキチン様タンパク質結合酵素Atg3とAtg10とを区別しない」ライフサイエンス新着論文レビュー(http://first.lifesciencedb.jp/archives/6186)2012年12月3日
  • *野田展生「Atg7とそのAtg8結合型の立体構造」日本結晶学会誌, 54, 166-171 (2012). DOI:10.5940/jcrsj.54.166
  • 野田展生,*稲垣冬彦「オートファジーに機能するユビキチン活性化酵素Atg7の構造とそのユニークなAtg8活性化の機構」ライフサイエンス新着論文レビュー(http://first.lifesciencedb.jp/archives/3954)2011年11月29日
Press releases
  • 科学新聞(2021.8.6)「オートファゴソーム効率よく作る仕組み 微化研など解明 Atg8の活性が鍵」
  • 日刊工業新聞(2020.10.27)「微化研、オートファジーの⼀端解明 機能未知たんぱく質、脂質膜伸展に関与」
  • 日経バイオテク(2020.2.18)「微化研、「液ー液相分離」とオートファジーの論⽂相次ぎ発表」
  • 日経バイオテク(2020.2.6)「「液-液相分離」が担う蛋白質の品質管理、日本勢が論文2報をNatureで発表」
  • 化学工業日報(2020.2.7)「微化研-東⼤など、オートファジー構造体の実体解明」
  • 時事通信(2020.2.6)「「ごみ袋」は液滴から形成 酵母のオートファジー-微化研」
  • 時事通信(2020.1.29)「液体状たんぱくが分解しやすい=オートファジーで発⾒-微化研」
  • 日経サイエンス(2019.11)「膨大な分析と柔軟な発想 オートファジーに迫る」
  • 日本経済新聞(2019.5.31朝刊)「細胞の老化機構に迫る」
  • 読売新聞(2019.4.19夕刊)「オートファジー 仕組みの⼀端解明」
  • 日本経済新聞(2019.3.26夕刊)「細胞自食「オートファジー」の発生 仕組みの一端を解明 微化研など,再現を目指す」
  • 産経新聞(2019.3.26)「オートファジーの仕組み「6割分かった」」
  • 日刊工業新聞(2019.3.26)「オートファジーの“ゴミ袋”材料運搬の仕組み解明 微化研・東工大」
  • 化学工業日報(2019.3.26)「微化研など、オートファジー完全理解へ前進、隔離膜成⻑の機構解明」
  • 時事通信(2019.3.26)「細胞内「ごみ袋」⽣成過程解明=オートファジーの仕組み-微化研など」
  • 日刊工業新聞(2016.8.31)「革新の系譜・日本の科学技術力/オートファジー-病気や老化との関連明らかに」
  • 朝日新聞デジタル(2016.7.12)「細胞の再利用「オートファジー」、動き出しの仕組み解明」
  • マイナビニュース(2016.7.12)「オートファジーの初期過程に働く巨大複合体の仕組みを解明」
  • 日刊工業新聞(2016.7.12)「オートファジー始動たんぱく質が巨大化する仕組み解明」
  • 毎日新聞(2016.7.12東京朝刊)「自食作用 スイッチ解明 健康維持する働き」
  • 毎日新聞(2016.7.12西部朝刊)「自食作用:細胞の作用を解明 治療・予防へ応用期待」
  • 日経産業新聞(2015.6.2)「自食作用の引き金解明」
  • 日本経済新聞(2014.5.27朝刊)「細胞の不要たんぱく質分解の仕組み解明」